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Head pose estimation and facial landmark localisation
for animals

Abstract

This project investigates head pose estimation, facial landmark localisation
and the deployment of these techniques for animals, specifically sheep. A
new dataset of 850 sheep facial images, annotated with a 25 facial landmark
scheme and occlusion information, is introduced: the Sheep Facial Land-
marks in the Wild (SFLW) dataset. This provides a benchmark dataset
for evaluation of animal facial landmark localisation techniques and includes
a challenging range of images exhibiting large variations in head-pose and
occlusion.

A novel data augmentation technique using thin-plate-spline warping is pro-
posed to enhance the effectiveness of training on the SFLW dataset, along
with the use of negatively correlated augmentation, similar to that proposed
in [55], to boost representation of extreme head poses. These techniques are
shown to be effective in improving performance for head pose estimation and
facial landmark localisation.

An existing model for human head pose estimation from image data, without
facial landmark locations, using a CNN is adapted for use on sheep. A pre-
trained model is fine-tuned on the SFLW dataset with a resulting average
absolute error for yaw, pitch and roll under 7 degrees. Correlation with
ground truth pose information is also impressive, up to 0.91 for yaw.

A number of existing state-of-the-art methods used for human facial land-
mark localisation are evaluated on sheep using the SFLW dataset, the best
achieving a success rate of 90% and a mean normalised error of 0.05. Analysis
of the results of the highest performing technique motivates the introduction
of a pose-informed localisation technique, incorporating the newly developed,
landmark-free head pose estimation network.

This pose-informed localisation technique achieves a higher performance than
the best existing method on the SFLW dataset; with 93% success rate and a
mean normalised error of 0.045. Most significantly, error is markedly reduced
for images with extreme head poses.

Finally, a near real-time demonstration of a full pipeline, incorporating au-
tomated face detection and pose-informed face alignment, is carried out for
a number of pre-recorded videos. This serves as a proof-of-concept that
a production system incorporating these technologies for automated health
monitoring of livestock is eminently feasible.
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Chapter 1

Introduction

1.1 Motivation

In recent years automation has become widespread in many industries. This

has been facilitated by numerous technical advances in computer systems, as

well as the significant reduction in the cost of deploying such systems. Agri-

culture is an industry where mechanisation has had a huge historical impact

but is only just beginning to see the effects of computer-aided automation.

Global positioning system related technologies are some of the most estab-

lished within agriculture [36]. GPS enables highly detailed monitoring of

crops for assessment of yield, as well as targeted chemical application. Au-

tomated navigation by GPS has also become increasingly popular in recent

years.

Most agricultural computer vision (CV) research to date has focussed on

arable farming, with CV applied to asses quality of various fruits and veg-

etables, such as tomatoes [3], potatoes [59], as well as other quality control use

cases [45, 50]. Some work has also been carried out aimed at pastoral farm-

ing, where CV has been used for feed and waste management systems [23].

An application making use of artificial intelligence to help dairy farmers has

also recently been released [13], though instead uses accelerometer and GPS
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sensors.

The focus of this project is also related to pastoral farming, with the aim of

contributing towards automated pain recognition in livestock. Work in this

area has shown that pain in sheep can be reliably predicted from a number

of facial action units [33]. A key component of this process is the localisation

of a number of landmarks—for example, the eyes, ears or nose—on the face

of the sheep in order to identify these action units.

Facial landmark localisation is a well-explored problem in humans [38], but

existing work tackling this problem for sheep [55] and horses [40] only consid-

ers very sparse landmarks and relatively minimal head pose variation, as well

as achieving less than ideal accuracy. Denser landmarks would allow for more

accurate action unit detection and increased head pose variation in training

data would improve the resilience of models when deployed in-the-wild.

The primary aim of this work, then, is to investigate the problem of landmark

localisation (also known as face alignment) for animals, primarily sheep. The

end-goal being to demonstrate the feasibility of an automated system which

can be used to detect medical issues that require further investigation as

early as possible, rather than relying on infrequent veterinary evaluations

of animals. This could be achieved through the use of CCTV monitoring

of the animals, linked to a CV pipeline which detects sheep faces, localises

the landmarks on the face, and determines pain levels from extracted action

units.

1.2 Aims and Structure

This project has a number of key aims ranging from acquisition of appropriate

data to end-to-end deployment of a video facial alignment system for sheep.

These are broken into five distinct aspects:

• Consideration of available data and description of annotation procedure.

Summary of augmentation techniques including the introduction of novel
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image warping augmentation method.

• Exploration of landmark-free head pose estimation for animals.

• Evaluation of existing human facial landmark localisation methods ap-

plied to animal faces.

• Investigation into method providing improved facial landmark localisa-

tion performance for animals using head pose information.

• Application of animal facial landmark localisation in real-time on video

data.

Each of these topics is covered in a separate chapter. Given the wide range

of existing work relating to these different foci, a summary of relevant work

is given at the beginning of each chapter where appropriate.
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Chapter 2

Dataset Annotation and Augmentation

The critical issue faced in facial landmark localisation for animals is one of

data sparsity. The sheep dataset used in [55] includes just 600 images (of

which approximately 500 are available) annotated with only eight landmarks.

The only other animal facial landmark dataset is that used in [40] for horses,

which includes 3717 images annotated with only five landmarks. This is in

stark contrast to facial datasets for humans; Multi-PIE [21] (750,000 images

with 68 landmarks), Menpo [57] (over 10,000 images with 39 landmarks),

AFLW [29] (25,993 images with 21 landmarks) and PUT [25] (9971 images

with 30 landmarks).

As such, it is imperative to enhance the available data for animal landmark lo-

calisation as much as possible to enable improved performance. This chapter

describes the annotation procedure used to extend the original sheep dataset

annotations to produce the Sheep Facial Landmarks in the Wild (SFLW)

dataset. This dataset contains 850 sheep images annotated with 25 facial

landmarks and occlusion information. The augmentation techniques used to

improve the data volume for training are also described; a novel thin-plate

spline (TPS) [5] warping method and negatively correlated augmentation

based on head pose [55]. These techniques are used to produce a series of

variants of the raw SFLW dataset which are used during this dissertation,

these are summarised at the end of the chapter.
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2.1 Data Annotation

The SFLW dataset is composed primarily of images used in [55], with some

new images also included to bring the total number of images to 850. Almost

all of the original images feature unique animals, though it is difficult to con-

firm exactly how unique animals are contained in the dataset, it is certainly

fewer than 850.

An annotation scheme containing 25 landmarks is devised based on the orig-

inal eight-point annotation used in [55]. The original and updated schemes

are shown in Figure 2.1a. This is approximately based on human annotation

schemes, though with additional emphasis placed on the ears, which are typ-

ically excluded from human face alignment but are critical for most animals.

The eyes, nose and mouth are represented by eight landmarks, with a further

eight representing the ears and the remaining nine corresponding to the face

boundary. This scheme also allows for effective extraction of the action units

used for sheep pain estimation in [33]

Due to the shape of the sheep face, with an elongated snout, self-occlusion is

very common, far more so than for human faces. As such, the SFLW dataset

is also annotated with binary occlusion information for each landmark. Some

face alignment methods incorporate occlusion prediction [10, 53] which can

be exploited as a result of this additional annotation.

In order to more efficiently extend the original eight-point annotations from [55],

a semi-automated annotation approach is used. This kind of method is not

uncommon when attempting to unify annotations from various datasets [44],

though typically relies on a large volume of existing annotations to inform

automation.

Instead, a purely shape-driven technique is employed; base shapes for both

the original 8-point and new 25-point landmark schemes are defined (as

shown in Figure 2.1a) and the thin-plate spline (TPS) [5] transformation

from the 8-point base shape to the 8 annotated landmarks calculated. This

transformation is then applied directly to the 25-point base shape to obtain
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Figure 2.1: Annotation specification and procedure.

(a) Standard shapes for
original (red) and new (blue)

landmarks.
(b) Example images with original (red), predicted new

(blue) landmarks and TPS grid shown.

an approximate prediction of the 25 landmark location.

The TPS transformation implementation is adapted from that used in [4],

the resulting predicted annotations are visualised for two example images in

Figure 2.1b. For demonstrative purposes, the TPS transformation is applied

to a grid of points which are also rendered.

TPS warping is used due to its ability to incorporate both simple affine

transformations to account for global effects caused by pose variation, as

well as local deformations caused by variations in face shape or the relative

position of the ears. The grids in the example images clearly show how

rotations and shears are captured, as well as local effects such as in the area

around the eyes and ears of the second example.

These initial predictions are then manually tuned to the correct image loca-

tions, and occlusions annotated as applicable. This semi-automated approach

significantly increased the speed of annotation. The resulting SFLW dataset

contains 850 images with 25 landmarks and occlusion annotations.
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2.2 Data Augmentation

A number of data augmentation methods are utilised to increase the effective

size of the SFLW dataset from the raw 850 images. Horizontal mirroring,

rotation and translation are all well-established methods of data augmenta-

tion for machine learning applications. In this case, horizontally flipping the

image (and transposing the landmark order as appropriate) is an effective

way of improving pose invariance. Rotating the images and translating the

facial bounding-boxes are also simple and effective augmentation methods.

This section introduces two additional techniques used for data augmenta-

tion; image warping using TPS transformations and negatively correlated

augmentation (NCA), both described in detail below.

2.2.1 TPS Warping

In order to avoid repeating identical images when training localisation mod-

els, TPS warping [5] is used to generate slight variations on input image

data. These variations are visually subtle but should allow for more general

representations of features to be learnt, and hence over-fitting to be avoided.

TPS warping is able to simulate changes in ear position as well as providing

low magnitude pose and face-shape variation. Affine warping of triangles

from the Delaunay triangulation of the landmarks is a common technique

for face morphing [19], but produces unrealistic results compared with TPS

warping for this application.

Somewhat similar warping techniques are highlighted in [12] with the goal of

face frontalisation, rather than data augmentation. [34] presents a method of

data augmentation using high-resolution 3D models of humans faces to aid

with the largely unrelated problem of face recognition. The variation in the

3D shape of sheep faces levels of self-occlusion caused by the shape of sheep

face make this method largely infeasible.
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Figure 2.2: TPS warp augmentation for example image; note the rotated
ears, the slightly wider spacing between the eyes, and the movement of the

nose slightly towards the right of the image.

(a) Original image. (b) Warped image.
(c) Warped image with

TPS grid.

The visible landmarks of the original image are randomly permuted according

to a hand-crafted set of rules, for example moving the eyes up or down,

and closer together or further apart. The TPS transformation from the

original landmarks to the permuted landmarks is then calculated and the

inverse transformation applied to a grid over the image area. The grid is

then linearly interpolated over the entire image area. This provides a set

of coordinates which can be sampled from the original image to efficiently

obtain a warped version of the image, with the correct image features now

in locations matching the permuted landmarks. An example of this process

is shown in Figure 2.2.

An alternative approach is to warp the landmarks of one image onto those of

another randomly selected from the training data, providing the difference

is not too great. Attempting this approach with such a small and varied

dataset, however, provides unrealistic warped image and so is not explored

further here.

2.2.2 Negatively Correlated Augmentation

One key issue with the SFLW dataset is the distribution of head poses

included. Unsurprisingly, the majority of facial images of sheep available
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Figure 2.3: Absolute yaw angle distributions, using 6 degree bins, for SFLW
and SFLW-NCA datasets.

(a) SFLW
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online—most of the original dataset was sourced from the internet—have

frontal faces, or close to. Images collected specifically for the purposes of fa-

cial landmark localisation have a better distribution, but make up a smaller

proportion of the SFLW dataset.

The distribution of absolute yaw angles (i.e., the angle away from frontal)

for the raw dataset is given in Figure 2.3a. The imbalance is clear, with the

most common range (0–6 degrees) having over 40 times more images than

the least common range (84–90 degrees). Given the proposed application—

using CCTV within an agricultural setting—large variation in head pose is

expected to be common, and this imbalance is, therefore, a serious issue.

As such, a technique very similar to the negatively correlated augmentation

(NCA) introduced in [55] is employed. Using the distribution of absolute

yaw angles, a boosted augmentation factor for each pose bin is determined.

The integer augmentation factor for pose bin b, augb, is given by:

augb =

⌈(
countmax

count b

)α⌉

Where countmax is the maximum count for any pose bin, and countb is the

count for pose bin b. The level of boosting is controlled by parameter α,

where 0 ≤ α ≤ 1, this allows for the underlying distribution to be somewhat
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maintained, but with a greater representation of less common pose angles.

The SFLW-NCA dataset is generated using α = 0.6 with pose bins 6 degrees

wide, this results in augmentation factors between 0 (i.e., no augmentation for

the most common bin) and 20, and an average augmentation number across

the dataset of ∼3. The distribution of the resulting SFLW-NCA dataset

is shown in Figure 2.3b. It is clear that extreme poses are much better

represented using this method.

Augmented images are generated using the modifications described in the

previous section: random rotation and TPS warping. Horizontally flipped

versions of all images are also included, so the effective augmentation number

of the final SFLW-NCA dataset ranges between 1 and 40, with average ∼6,

totalling 4794 images.

2.3 Summary

This chapter has described the newly introduced Sheep Facial Landmarks in

the Wild (SFLW) dataset, which includes 850 facial images of sheep anno-

tated with 25 facial landmarks, as well as occlusion information. The semi-

automated annotation procedure is described, along with the introduction

of an image augmentation technique using thin-plate-spline warping [5] to

emulate the effects of variation in face shape, head pose and local variations

such as ear position. In addition, the motivation, implementation and effects

of negatively correlated augmentation, as proposed in [55], are explored.

A number of variants of the SFLW dataset, employing various combinations

of the augmentation methods introduced above, are used for comparative

purposes throughout the remainder of the dissertation. These are sum-

marised in Table 2.1. The SFLW dataset contains the raw 850 images, and

SFLW-NCA is as described immediately above. In addition to these are the

SFLW-flip and SFLW-warp datasets used for the comparative evaluation of

individual image augmentation techniques.

10



Table 2.1: Summary of dataset variants.

Dataset #Images Mirroring TPS Warping Rotation NCA

SFLW 850
SFLW-flip 1700 X
SFLW-warp 5100 X X
SFLW-AUG 5100 X X X
SFLW-NCA 4794 X X X X

The SFLW-AUG dataset is introduced for comparison to SFLW-NCA. SFLW-

AUG also uses all forms of image augmentation but does not use NCA to

determine balanced augmentation factors. Every image is instead augmented

equally with augmentation factor 6 in order to approximately match the num-

ber of images in SFLW-NCA.
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Chapter 3

Head Pose Estimation

Head pose estimation is a significantly less well-explored problem in com-

puter vision than landmark localisation. This is primarily because use cases

which require head pose information alone are not common compared with

applications which require full facial alignment. Head pose can also be es-

timated by finding a solution to the perspective-n-point problem between

2D landmarks and a predefined 3D landmark model [31]. Given that facial

landmark localisation is largely ‘solved’ for humans, this method is common.

This chapter first summarises work relevant to the problem of animal head

pose estimation, then describes in detail the methodology used as part of this

work; fine-tuning a human head pose estimation network. Finally, the pro-

posed technique is evaluated, with both quantitative and qualitative results

provided, and the effects of data augmentation are assessed.

3.1 Background

A number of classical techniques for human head pose estimation have been

proposed [35], though, as described above, it is common in practice to es-

timate head pose indirectly using facial landmarks. Recently, deep learning

has been applied to both landmark localisation and head pose estimation
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for humans, often combined into a single network [39]. Specific networks

have also been designed to determine only the head pose of humans from im-

ages [43], aiming to be more efficient than the often very large, multi-function

networks and with impressive results.

In order to deal with the large amount of self-occlusion caused by varia-

tions in sheep head pose, the inverse procedure is considered. Rather than

calculating head pose from localised landmarks, we instead aim to improve

facial alignment performance by first predicting the head pose of the sheep

directly from the input image, and then using the estimated pose to aid in

the localisation process. Head pose is encoded as three angles: yaw, pitch

and roll, representing left/right, up/down and clockwise/anticlockwise rota-

tions in image space respectively. In this context, these angles are commonly

known as Euler angles. For the purposes of sheep facial alignment, yaw is

the most critical angle due to the resulting self-occlusions.

While inter-species transfer learning has shown to perform poorly for land-

mark localisation [40], presumably due to the significant difference in ap-

pearance between alike landmarks, there is significant scope for inter-species

transfer learning for head pose estimation. Firstly, there is a greater degree of

visual similarity between animals and humans when considering facial images

holistically, rather than locally as in the case of landmark localisation. The

task itself is also arguably simpler; the aim being to regress only three Euler

angles (yaw, pitch and roll) as opposed to a large number of two-dimensional

coordinates. As such, a landmark-free head pose estimation method for sheep

is developed by fine-tuning a pre-trained CNN model for human head pose

estimation.
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3.2 Methodology

3.2.1 Data Preparation

In order to determine ground-truth head pose for the images in the SFLW

dataset a 3D base landmark model is manually defined with neutral head

pose (0 yaw, pitch and roll) and approximately average head shape. A

RANSAC [20] based method for solving the perspective-n-point problem is

then used to recover the approximate head pose using the 3D points of this

landmark model and the 2D annotated landmarks for each image. The six

landmarks representing the top, bottom and tip of both ears are excluded

from this correspondence as they typically move significantly relative to the

rest of the face. As the camera coefficients are unknown, the intrinsic param-

eters are estimated based on the image size and lens distortion is assumed

to be negligible. While the generated ground-truth poses are not exact, they

provide a very good approximation and are certainly sufficient for this appli-

cation.

3.2.2 Hopenet

As described above, transfer learning from a deep, human head pose esti-

mation network is employed to create a model capable of sheep head pose

estimation. The Hopenet network from [43] is selected due to its design fo-

cus specifically for head pose estimation, it is the most performant of the

networks trained in [43]. A Hopenet model pre-trained on the 300W-LP [62]

is used as the base model.

Ruiz et al. [43] introduce the principle of multi-loss training for head pose

estimation. Pose angles are sorted into 66 bins between −99 and +99 degrees,

forming the basis of a classification problem, for which conventional soft-max

loss is used. In addition to this, the expected continuous angle is calculated

from the soft-max output and mean squared error (MSE) loss evaluated
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against the raw ground truth angles. These two losses are then summed (with

a significant weighting towards the cross-entropy loss). This is theorized to

enable the network to learn first a course guess of the angle based on the

classification problem, and then predict a more accurately tuned continuous

value based on the MSE loss.

The Hopenet architecture uses a ResNet [22] bottleneck followed by three

independent fully-connected layers, one for each of yaw, pitch and roll. Each

of these is followed by a 66 node soft-max layer from which cross-entropy loss

is calculated, along with the expected values used for the MSE loss.

3.2.3 Training Procedure

The base model is fine-tuned on the SFLW-NCA dataset with additional aug-

mentation provided by randomly flipping the input images in the x-direction

and translating the image by up to ∼7% in the x- and y-directions (as in [43]).

Five-fold cross-validation is used, so a fifth of the dataset is isolated for test-

ing of each fold. A tenth of each remaining training set is used for validation.

A similar training process as in [43] is employed, using the Adam opti-

mizer [28] with default parameters. The model is trained in batches of 16

over 16 epochs, chosen as validation loss plateaus towards the end of this pe-

riod. A low initial learning rate of 0.0001 is used as the model is only being

fine-tuned and not trained end-to-end; a larger initial learning rate results in

very poor performance. The learning rate is also reduced by a factor of ten

halfway through training. The model with the lowest validation loss during

training is selected for evaluation.

3.3 Evaluation

To evaluate the effectiveness of the sheep head pose estimation model a

number of metrics are employed. Mean absolute error (MAE) is typically

used—and is the metric presented in [43]—though can often be misleading.
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Table 3.1: Quantitative head pose estimation results for network trained on
SFLW-NCA and tested on SFLW compared with two baselines.

Mean Baseline Pre-trained Baseline Fine-tuned Model

Yaw Pitch Roll Ave Yaw Pitch Roll Ave Yaw Pitch Roll Ave

MAE 15.73 11.88 8.36 11.99 27.77 19.44 11.38 19.53 6.04 7.58 6.13 6.58
PCC 0.00 0.00 0.00 0.00 0.02 0.20 0.08 0.05 0.91 0.56 0.40 0.75
SAGR 0.50 0.57 0.50 0.52 0.51 0.36 0.45 0.44 0.78 0.83 0.77 0.80

For example, a model always predicting the mean of a dataset with little

deviation will often perform well in this metric. As such, Pearson’s Corre-

lation Coefficient (PCC) is used to assess the correlation of predictions with

the ground truth, arguably a better measure of a model’s usefulness. In ad-

dition to these two metrics, Sign Agreement metric (SAGR) [37] is used to

give a coarse indication of simply whether the prediction matches the general

direction (left or right/up or down) of the head pose. This is a significant

attribute when considering pose-informed landmark localisation. In all cases,

the unaugmented test set is used for evaluation.

3.3.1 Overall Performance

Two baselines are included for comparison to the fine-tuned model; firstly

taking the mean of the dataset as the prediction, and secondly using the

estimates generated by the pre-trained human head pose estimation network

when using sheep images as input. Results for these and the highest per-

forming fine-tuned model are given in Table 3.1.

The fine-tuned model outperforms both baselines significantly in all metrics

and for all of yaw, pitch and roll. The mean baseline achieves reasonable

MAE, as described above, but has no correlation to the ground-truth angles

and essentially random SAGR. The human baseline achieves some correlation

but has very large MAE and worse than random SAGR. In contrast, the fine-

tuned model achieves high PCC, perhaps the most critical metric, and also

good values for SAGR. The MAE is also much lower than both baselines,

with an average of approximately 6.5 degrees error. Critically, PCC for yaw
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is particularly high at 0.91; accurate yaw prediction enables significantly

improved landmark localisation, as highlighted in the following chapters.

It might be noted that SAGR is not as high as perhaps would be expected

given the relative simplicity of this metric. It is important to note the ef-

fect of the magnitude of angle on the value of SAGR. Considering yaw, for

example, SAGR for angles of magnitude less than 10 degrees is 0.67, while

for angles with magnitude greater than 10 degrees is 0.96. This is not sur-

prising given that for angles within 10 degrees of frontal there is relatively

little visual difference in the resulting 2D image. Confusion in sign for these

low magnitude angles is also not critical when considering application to

landmark localisation.

Qualitative pose estimation results for some example images in the SFLW

dataset are given in Figure 3.1, with pose visualised as a 3-dimensional axis

at the centre of the image. The blue axis represents the gaze direction, and

the red and green axes show the horizontal and vertical directions relative to

the sheep’s head respectively. As shown, pose predictions remain accurate

across a variety of sheep breeds and ages, as well as in extreme poses.

3.3.2 Effects of Data Augmentation

To assess the effects of the various augmentation techniques introduced in

Section 2.2 on head pose estimation, the network is also trained of the SFLW,

SFLW-warp and SFLW-AUG datasets. The same training procedure as de-

scribed above is used.

Table 3.2 shows the results for the raw SFLW-flip dataset compared with

the SFLW-warp dataset, allowing evaluation of the effect of TPS warping

augmentation in isolation. For individual angles results are inconclusive, but

on average the model trained on SFLW-warp outperforms that trained on

SFLW-flip significantly in terms of MAE. SAGR is also slightly improved,

while PCC is equal for the two models. This indicates that for this TPS

warping does have some positive impact on performance.
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Figure 3.1: Qualitative head pose estimation results for network trained on
SFLW-NCA and tested on SFLW. Head pose is visualised as a

3-dimensional axis at the centre of the image.
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Table 3.2: Head pose estimation performance metrics for networks trained
on the SFLW-flip and SFLW-warp datasets and tested on SFLW.

SFLW-flip SFLW-warp

Yaw Pitch Roll Ave Yaw Pitch Roll Ave

MAE 6.37 7.79 6.06 6.74 6.02 7.71 6.11 6.61
PCC 0.91 0.50 0.45 0.74 0.90 0.53 0.39 0.74
SAGR 0.77 0.81 0.75 0.78 0.80 0.84 0.77 0.80

Table 3.3: Head pose estimation performance metrics for networks trained
on the SFLW-AUG and SFLW-NCA datasets and tested on SFLW.

SFLW-AUG SFLW-NCA

Yaw Pitch Roll Ave Yaw Pitch Roll Ave

MAE 5.95 7.70 6.10 6.59 6.04 7.58 6.13 6.58
PCC 0.91 0.55 0.43 0.75 0.91 0.56 0.40 0.75
SAGR 0.79 0.83 0.78 0.80 0.78 0.83 0.77 0.80

Table 3.3 shows the performance of the network when trained on the fully

augmented SFLW-AUG dataset, in comparison to the SFLW-NCA dataset.

Performance for both the AUG and NCA variants is slightly improved over

the SFLW-warp dataset, indicating the rotation of training images also pro-

vides a somewhat positive effect, and significantly improved over the unaug-

mented SFLW dataset. Over-fitting during the training process was markedly

lower for SFLW-AUG and SFLW-NCA.

There is very little difference between the results for the AUG and NCA vari-

ants. It seems that, for this application, NCA has little effect on resulting

performance. This is likely because the SFLW-AUG dataset already encap-

sulates enough variation in images with large pose angles for the network to

learn sufficiently. SFLW-NCA also contains slightly fewer images than the

AUG variant, but achieves near identical performance, suggesting that NCA

may have a small positive impact.

The model trained on the SFLW-NCA dataset has a smoother distribution of

MAE across the range of output angle magnitudes—as discussed for SAGR
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above—so is used for head pose prediction in the following chapters. The

results of this model are therefore also presented in Table 3.1 and Figure 3.1

above.

3.4 Summary

This chapter has demonstrated that, through fine-tuning of a CNN trained

for human head pose estimation, accurate estimation of sheep head pose from

images can be achieved. The Hopenet CNN [43] was fine-tuned on the SFLW-

NCA dataset, resulting in an average absolute error of 6.6 degrees and average

correlation of 0.75, with a maximum 0.91 for the yaw angle. TPS warping

augmentation was shown to have a positive impact on the effectiveness of

training, though NCA was found to provide no significant improvement over

the model trained on SFLW-AUG. Qualitative results demonstrated that

the network produces visually convincing head pose predictions for a variety

of head poses, as well as for different breeds and ages of sheep.
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Chapter 4

Evaluation of Existing Facial Landmark

Localisation Methods

Face alignment for humans is a long-standing problem in computer vision

and has been tackled in a number of ways over the past decade or more.

Hand-crafted methods were initially popular, followed by techniques utilis-

ing cascades of regression trees, which were largely deemed to have solved

the 2D facial landmark localisation problem. More recently deep learning ap-

proaches have provided even more impressive results, and improved resilience

to variation in head pose, along with 3D landmark localisation.

This chapter briefly summarises some of the existing methods for human

facial alignment, as well as some relevant work for animals. A number of the

described methodologies are then evaluated on the SFLW dataset with no

domain-specific modification. The effects of the data augmentation described

in Section 2.2 are also considered as part of this evaluation.
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4.1 Background

4.1.1 Classical Approaches

There are a large variety of classical approaches to facial alignment, though

these typically tackle the problem only in 2D. Older approaches form separate

shape and appearance models from training data which are matched to a test

image by solving a non-linear least squares problem. These approaches do not

deal well with large variance in pose and are typically quite slow, they have

almost entirely been superseded by cascaded regression-based techniques.

Recent regression-based methods instead learn an ensemble, or cascade, of

regressors based on local image features in order to iteratively refine an es-

timate of landmark locations. These typically obtain higher accuracy than

shape models and are more resilient to variation in pose, but can still struggle

with significant pose variation and occlusion. With the exception of some

very recent deep learning based methods, modern regression techniques are

considered state-of-the-art for 2D human facial alignment.

Some extensions to these methods have been proposed, primarily focussing on

smart initialisation or the use of higher accuracy sparse localisation followed

by refinement. Many of these rely on large volumes of data or additional in-

formation (e.g., 3D) so are not directly applicable, but provide an interesting

source of inspiration for the problem of animal facial alignment.

Shape Based Techniques

The concept of matching a shape model to a deformable object in an image

was first introduced by Cootes and Taylor in 1992 in the form of Active Shape

Models [15] (ASM). The same authors later introduced Active Appearance

Models [14] (AAM), a more performant refinement of ASM. AAMs make use

of a statistical deformable model of the shape constructed during training,

taking the form of a Point Distribution Model constructed using principal
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component analysis (PCA). In addition, an appearance model is learnt ei-

ther using holistic image features, or patch-based features taken from regions

around the landmarks. These features are based on image intensities, and in

modern applications typically use algorithms such as HOG [17] or SIFT [32].

Images are warped to match the reference shape of the training data and a

generative statistical model is built as to what image intensities are expected

in the region of each landmark. The solution is then found by solving a

non-linear least squares problem in order to fit the shape model to the test

image based on the appearance model using the Gauss-Newton optimization

method.

Constrained Local Models [16] (CLM) were proposed as an improvement

over AAM by instead forming the appearance model to generate likely feature

templates, instead of trying to approximate image pixels directly. Other more

recent developments include Active Pictorial Structures [2] (APS) which in-

stead formulate the shape model as a number of pairwise distributions based

on the edges of the graph of edges between landmarks. This is demonstrated

to outperform the use of PCA in typical applications of AAMs. Tree Struc-

tured Part Models [63] (TSPM) use a similar alternative shape model and

demonstrate impressive resilience to large variations in head pose, but rely

on images annotated with precise pose information. The Supervised Decent

Method [52] (SDM) was also proposed as an alternative to the Gauss-Newton

method for optimization, this is shown to improve the results obtained from

methods such as AAM.

Cascaded Regression Techniques

More recently, cascaded regression was introduced as a method for facial

landmark localisation, initially in 2010 as Cascaded Pose Regression [18]

(CPR). Rather than constructing shape and appearance models and fitting

by optimization, a cascade of regressors is trained to iteratively refine an

estimate of landmark locations starting from a rough initial guess. Results are

good, but most importantly this method is very fast compared with classical
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approaches, a key development being that features are sampled directly from

the image based on the current estimate.

This technique was built upon directly to form Robust CPR [10] (RCPR)

which can also regress an occlusion value (binarised from a continuous pre-

diction between 0 and 1) and uses multiple initialisations and alternative

feature extraction to improve performance. Project-Out Cascaded Regres-

sion [49] (PO-CR) instead solves the optimization problem faced by the shape

based techniques described above using a cascade of regressors, this provides

a major speed-up, but accuracy is not as high as more recent approaches.

Explicit Shape Regression [11] (ESR) and Regression viva Local Binary Fea-

tures [42] (LBF) are two other efficient regression-based approaches, though

with slightly different training and feature extraction methods.

The current widely accepted state-of-the-art in terms of classical facial align-

ment, however, is a technique using an Ensemble of Regression Trees intro-

duced in 2014 [26]. This approach is extremely efficient (up to 10000 fps)

and highly accurate. A cascade of regressors are learnt via gradient boosting

with a squared error loss function and, unlike other techniques, features are

extracted directly from the image using an exponential prior. This method

is certainly applicable to animal facial alignment and has been used for this

purpose effectively as explored below.

Extensions

A number of methods which take completely different approaches to the

problem of face alignment, or augment the functionality of the techniques

described indirectly, have also been proposed. [60] first predicts sparse land-

marks using a cascaded regression model, then using a nearest-neighbours

method to search the training data for a similar example. This then serves as

an improved initialisation for another cascaded regression alignment step. [56]

also predicts a sparse group of landmarks, but then aligns a 3D landmark

model with sparse predictions in order to obtain a good initialisation. [51]

instead uses a classifier to select an appropriate initialisation from a prede-
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termined set which then serves as a basis for face alignment by cascaded

regression. [61] uses an entirely different approach, treating facial alignment

instead as a search problem using image features to asses the quality of a

prediction.

The concept of smart initialisation is certainly applicable to animal facial

landmark localisation, but these techniques often rely on large training datasets

in order to obtain good results—something which is not available here.

4.1.2 Deep Learning Approaches

Recently, deep learning has become a popular approach to tackling a huge

variety of computer vision problem, facial alignment included. Technological

improvements and increased availability of large annotated datasets have

enabled very accurate landmark localisation models to be produced which

outperform all classical methods.

A number of applications tackle 2D landmark localisation specifically with

impressive results [47, 58, 30, 48]. Increasingly common is the use of 3D

data to further enhance performance and provide more detailed 3D output.

Networks producing landmark heat-maps [7] have been developed, along with

3D morphable models [24] and 3D dense morphable models [62] which are

able to deal with extreme variations in head pose while retaining very high

accuracy. [54] instead predicts head pose using a CNN and projects a 3D

landmark model to provide improved initialisation for classical face alignment

techniques (an idea explored later in this dissertation).

Over the last year, very large datasets with comprehensive annotations (pose,

gender, age, 2D/3D landmarks) have enabled all-in-one tools for the analysis

of human faces. Highly accurate, unified networks such as 3DFAN [8] and

hyperface [39] are able to predict many forms of output data with very high

accuracy.

One might think, then, that 3D deep learning solutions are the obvious an-

swer to the complex task of animal face alignment, given the large variations
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in head pose and high levels of self-occlusion. However, there is insufficient

data to consider these types of approaches. Transfer learning could be a

solution to lack of data, but others have shown that the inter-species divide

is too great between humans and horses/sheep for this to prove effective for

the task of facial alignment [40].

4.1.3 Landmark Localisation for Animals

There has so far been little work looking at facial landmark localisation for

animals. Sheep are targeted in [55] using a modified version of ERT with

triplet interpolated feature (TIF) extraction. This paper largely forms the

basis for the current work, contributing towards pain recognition in sheep [33]

and providing the start point for the dataset used here.

Transfer learning is explored in [40], which focusses primarily on horses, but

also utilises the dataset of [55]. Standard transfer learning is demonstrated

to have limited effectiveness for inter-species facial alignment and a two-stage

pipeline proposed which involves first warping the input image to more closely

match human proportions, then localising landmarks with a fine-tuned CNN.

This proves more effective than the TIF method proposed in [55], but can

only deal with landmarks defined within standard human annotation schemes

(i.e., not ears, which are critical for sheep).

An alternative deep learning approach is presented in [6] with application

to cat and dog faces, as well as humans. The dataset used in this case is

reasonably small, but there is no comparison to any meaningful baselines to

verify the effectiveness of the approach.

4.2 Evaluation

To assess the performance of facial landmark localisation techniques three

metrics are used. Firstly, mean normalised error (MNE); the mean across

the dataset of the average normalised error, that is the Euclidean distance
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of a predicted landmark to the ground truth landmark divided by the mean

edge length of the bounding-box, averaged across all landmarks. Success

rate; the proportion of the dataset with an MNE under 10%, and AUC;

the normalised area under the cumulative MNE distribution (such as those

pictured in Figure 4.1). Clearly for MNE lower is better and for success rate

and AUC higher is better.

As the SFLW dataset is small, five-fold cross-validation is used; the dataset

is split into five folds with localisation models tested on each one of the five

sequentially. Performance metrics are then calculated using the data from

all test folds. In cases where augmented datasets are used, the augmented

training set is selected such that it contains variants of the raw training

images only. The resulting models are then evaluated on the raw, rather

than the augmented, test set.

This section first provides a comparison between a number of the techniques

described above applied to the SFLW dataset. Then the effects of the data

augmentation introduced in Section 2.2 are explored.

4.2.1 Overall Comparison

Existing implementations of state-of-the-art classical facial alignment methods—

ESR [11] (C++), (R)CPR [18, 10] (Matlab), ERT [26] (C++) and TIF [55]

(C++)—are modified to incorporate the 25 landmark annotation scheme

used for the SFLW dataset. The modified implementations are then trained

and tested on the applicable data and predicted landmarks exported to a

common format. These predictions are then loaded within the Menpo frame-

work [1] allowing for an identical evaluation procedure.

As the apparent state-of-the-art technique for animals [40] relies on trans-

fer learning from human datasets, it is unable to localise the full SFLW

annotation scheme (human annotation schemes do not incorporate ear land-

marks). It is therefore excluded from this analysis, and comparison instead

focussed on the state-of-the-art method which is able to localise all land-
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Table 4.1: Quantitative performance metrics for existing landmark
localisation methods trained on SFLW-flip and tested on SFLW.

Baseline ESR CPR RCPR TIF ERT

MNE 0.139 0.090 0.065 0.061 0.058 0.054
Success Rate 0.46 0.73 0.86 0.86 0.85 0.88
AUC 0.858 0.907 0.932 0.937 0.939 0.943

marks; ERT/TIF [26, 55].

All methods are trained with augmentation by horizontal mirroring (i.e., on

the SFLW-flip dataset). Where appropriate, image repetitions with bounding-

box perturbation are used with augmentation factor 30.

To provide a crude baseline, the mean shape of the SFLW dataset is calcu-

lated and projected into the bounding-box of each image, from this the error

to the ground truth shape is calculated. This gives an indication of the level

of performance expected when no facial alignment model, or fitter, is used at

all.

Table 4.1 gives the performance metrics for this baseline, along with those for

the existing methods being evaluated. Most achieve a reasonable accuracy,

with the success rates for CPR, RCPR, TIF and ERT all over 85%. As

expected RCPR improves slightly over CPR, oddly TIF performs markedly

worse than unmodified ERT in contrast to the results presented in [55]. This

may be due to the increased density of the SFLW landmark scheme (25 versus

the 8 in [55]). Cumulative MNE distributions for these fitters are given in

Figure 4.1.

ERT achieves the highest performance and is also the fastest to localise land-

marks for an image, significantly so compared with (R)CPR which is the only

other methods to achieve similar performance. As such ERT is selected as

the base fitter for the remainder of this work.

Figure 4.2 shows the errors for each landmark individually using the ERT

fitter trained on the SFLW-AUG dataset. The four landmarks corresponding
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Figure 4.1: Cumulative MNE distributions for existing landmark
localisation methods trained on SFLW-flip and tested on SFLW.
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Figure 4.2: MNE for each landmark for the optimal ERT fitter tested on
SFLW.

to the ears of the sheep display the highest error rate, which is not surprising

given the large variation in the position of the ears relative to the rest of

the head. The two landmarks on the sides of the face also exhibit high error

rates, likely because these are the most often occluded of all landmarks. The

most successfully localised landmarks are the eyes and those around the nose

and mouth. This is probably due to the distinguishable visual nature of

these elements, typically being much darker than the surrounding areas of

the image.
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Table 4.2: Localisation performance for ERT fitters trained on SFLW,
SFLW-flip and SFLW-warp datasets and tested on SFLW.

SFLW SFLW-flip SFLW-warp

MNE 0.0619 0.0581 0.0579
Success Rate 0.834 0.847 0.856
AUC 0.933 0.939 0.940

4.2.2 Effects of Data Augmentation

As described above, the ERT fitter is selected due to its high performance

and low latency; all further investigation uses the ERT fitter only. In this

section the effects of the newly introduced TPS warping technique are con-

sidered, followed by the impact of NCA and the number of bounding-box

perturbations—repeats of a training image with slight variations in the po-

sition and size of the facial bound-box—referred to as #pert .

TPS Warping

To evaluate the impact TPS warping has on performance, three ERT fitters

are trained. First on the SFLW dataset with #pert = 30, then SFLW-

flip dataset with #pert = 15, and finally on the SFLW-warp dataset with

#pert = 5. The augmentation factor of the SFLW-warp dataset is 6 (i.e.,

there are six TPS warped images for every raw image) and is 2 for SFLW-flip,

so in total every image is repeated an equal number of times (30) in all cases.

Table 4.2 shows the localisation performance for these two fitters tested

on the SFLW dataset. The fitter trained on SFLW-warp outperforms that

trained on the dataset with no TPS warping, though the impact is slight.

NCA

Table 4.3 shows quantitative results for the ERT fitter trained on the unaug-

mented SFLW dataset, the SFLW-AUG dataset—with uniform augmentation—
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Table 4.3: Localisation performance for ERT fitters trained on SFLW,
SFLW-AUG and SFLW-NCA datasets (#pert = 30).

SFLW SFLW-AUG SFLW-NCA

MNE 0.062 0.050 0.063
Success Rate 0.83 0.90 0.85
AUC 0.933 0.945 0.932

and the SFLW-NCA dataset with negatively correlated augmentation; the re-

sults are perhaps surprising. As expected, the fitter trained on SFLW-AUG

significantly outperforms that for SFLW, with a 7% increase in success rate,

but the fitter trained on the SFLW-NCA dataset performs significantly worse.

In fact, it only marginally improves over that trained on the unaugmented

dataset.

This is because the raw dataset used for testing is significantly skewed to-

wards lower yaw angles (as described in Section 2.2.2). As such, providing

additional augmentations for angles with high variation in pose has little im-

pact on the performance when averaged over the whole test set. As there is

less augmentation for images with low absolute yaw angle—common in the

test set—it is actually not surprising that performance is much worse than

for SFLW-AUG. This is explored further in the Chapter 5, motivating the

use of a pose-informed facial alignment technique.

Number of Bounding-Box Perturbations (#pert)

As mentioned previously, zooming and horizontal and vertical image trans-

lation are common methods of data augmentation for machine learning ap-

plications. In the case of facial alignment, this is achieved by repeating an

image while permuting the position and size of the facial bounding-box. For

the ERT fitter the number of repetitions can be controlled, here referred to

as parameter #pert .

The effects of varying the value of #pert are explored for the standard ERT

fitter trained on the SFLW-flip dataset, with results presented in Figure 4.3.
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Figure 4.3: Effect of #pert on MNE and Success Rate for ERT fitter.
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As expected, increasing the number of perturbations generally results in re-

duced MNE and higher success rate, as the fitter is able to achieve a more

generalisable solution. The improvement in performance is drastic for low

values of #pert , but performance gains reduce exponentially as #pert in-

creases. MNE continues to decrease very slightly, but Success Rate appears

to plateau at around 0.88 for #pert > 30 with this training setup.

Increasing the number of perturbations also has a large impact on training

speed. Higher values of #pert result in significantly longer training times,

and larger memory requirements during the training process. As such, very

large values of #pert are generally infeasible. #pert = 30 is selected for the

majority of experiments in this work as it provides near-optimal performance

while maintaining reasonable time and memory requirements for training.

A lower value is used in some comparative evaluations to facilitate faster

training.

4.3 Summary

This chapter has summarised classical and deep learning approaches for the

task of human facial alignment, as well as describing existing work focussing

on landmark localisation for animals. A number of the state-of-the-art meth-
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ods were modified to for use with the sheep facial landmark annotation

scheme and evaluated on the SFLW dataset. ERT [26] is shown to be the

most highly performing method, with 0.05 MNE and 90% success rate when

trained on the SFLW-AUG dataset. This method is able to accurately lo-

calise the eyes, nose and mouth, though struggles particularly with the ears.

TPS warping is shown to be effective for the task of facial alignment, but

NCA is demonstrated to have a negative impact on results in this case. The

effect of the number of bounding-box perturbations is also assessed for the

ERT fitter, with an optimal value of 30 selected.

33



Chapter 5

Pose-Informed Face Alignment

Informed by the results of landmark localisation using existing methods de-

signed for human faces, this chapter introduces a novel, pose-informed tech-

nique for facial alignment of animals. First, the context and motivation of

the technique are explained, followed by a description of the methodology

used. Finally, the proposed pose-informed landmark localisation method is

evaluated and compared with existing methods, along with an investigation

into the effects that the choice of parameters and data augmentation have

on results.

5.1 Motivation

In order to devise an improved method of landmark localisation for sheep,

we must first consider what it is that causes conventional approaches to fail.

Head pose variation is a common problem in human facial alignment [8], but

is mitigated by having access to very large and heterogeneous datasets. Large

datasets for animals are not available and, given the significant variations in

pose and resulting self-occlusions within the SFLW dataset, this seems an

obvious cause for error.

Figure 5.1 shows the MNE for images grouped by absolute yaw angle using

34



Figure 5.1: MNE distribution, using 5 degree bins, for ERT fitter trained
on SFLW-AUG and tested on SFLW.
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5 degree bins. It is clear that head pose has a significant impact on the

accuracy of facial alignment. For angles less than 45 degrees from frontal,

the error is relatively low, but for angles between 45 and 90 degrees the error

is significantly higher, sometimes up to almost 15% of the average side length

of the facial bounding-box. This supports the assertion that large head pose

variation is the primary cause of failure.

Looking qualitatively, Figure 5.2 includes example images which have some of

the highest MNE of the dataset. All images exhibit extreme poses, with many

of the sheep facing almost 90 degrees away from frontal. It is unsurprising

that a fitter initialised using the mean shape of the dataset would struggle

to adapt to these poses.

Consequently, the concept of better initialisation is considered; rather than

initialising from the mean shape, instead the fitter is initialised with a shape

that is closer to the ground-truth, theoretically making the task of localisation

simpler. A number of methods were investigated: re-projection of a 3D

model of the sheep facial landmarks using predicted pose (as used for humans

in [54]), selection of pre-defined initialisations based on predicted pose bin

(similar to [51]), and nearest neighbour search (inspired by [60]). None of

these methods, however, produced significant improvements. It is possible

that due to high levels of self-occlusion and inter-breed variation that the
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Figure 5.2: Failure cases for standard ERT fitter. The top row shows
ground truth landmarks and the bottom row shows predicted landmarks.

image data is simply too varied for a single fitter to encompass all poses.

So instead of a smart initialisation technique using a single fitter, a multi-

fitter approach is introduced. This increases storage space requirements and

can increase training time, but for the proposed application this is not an

important consideration. The proposed method is similar to initialisation

using pose bins, but a separate fitter is instead trained for each bin. The

correct fitter is then selected at test time based on the predicted head pose.

This technique is dubbed Pose-Informed ERT (PI-ERT) and described in

detail in the following section.

5.2 Methodology

5.2.1 Training

Training images are first partitioned into a number of bins based on their

associated yaw angles. Images with negative yaw angles (i.e., those with

sheep facing to the right of the image) are mirrored horizontally and the

positive yaw angle is taken for training. This means that all images used for

training contain left-facing sheep, and the number of bins (hereafter referred
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Figure 5.3: Example images for series of seven pose bins. As right facing
images are ordinarily flipped, this is equivalent to #bins = 4.

to as #bins) can essentially be halved. Flipping all images to be in the same

direction also has the effect of doubling the number of training images per

bin, if the effects of horizontal mirroring augmentation are ignored. Examples

of images partitioned into pose bins are given in Figure 5.3.

Pose bin divisions are evenly sized within the range 0–90 degrees, so, for

example, #bins = 3 would result in the three bins: 0–30, 30–60 and 60–90. A

separate fitter is then trained for each of these bins. Additional augmentation

is provided by repeating training images with slightly perturbed bounding-

boxes (as in the previous chapter, the number of perturbations used for

training of a given model is referred to as #pert). Image sizes are also

normalized relative to the bounding-box size prior to training.

The ERT localisation algorithm [26] is selected due to its high performance

and very fast localisation time, as highlighted in the previous chapter, with

the aim of retaining real-time performance for the PI-ERT localisation method.

The dlib [27] implementation of ERT is again used within the Menpo frame-

work [1] for data handling.

As throughout, 5-fold cross-validation is used. It is also important to note

that the cross-validation sets used here are identical to those used for pose

estimation. Thus no test images for the PI-ERT system have been used for

training of either the pose estimation step or the landmark localisation step.

As such, ground-truth pose annotations are used for training, and predicted

pose from the network described in Chapter 3 for testing.
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5.2.2 Testing

Given a test image with an annotated bounding-box, the face is cropped and

resized then run through the pose estimation network of Chapter 3. This

provides an estimate of yaw, roll and pitch on a continuous scale from −90

to +90 degrees. As for training images, if the angle is below 0 (the sheep is

facing to the right) the image is flipped horizontally. The absolute value of

the predicted yaw angle is then used to determine which pose bin the image

falls into, and therefore which of the pre-trained fitters should be applied for

the image. The fitter is applied as usual to localise the facial landmarks, the

image (and predicted landmarks) can then be mirrored back if required.

It is clear that there is some trade-off in choosing the value of #bins . With

fewer bins, it is more likely that the pose estimation will be accurate enough

to select the correct bin, and there are sure to be enough training images

in each bin. With a greater number of bins it is more likely there will be

an error in bin selection and there might be insufficient training images in

each bin, but each fitter should be able to achieve higher performance as it

is more closely tailored to a specific range of angles. The choice of #bins

and the overall performance of the PI-ERT approach are explored in detail

in the following section.

5.3 Evaluation

This section summarises and evaluates the performance of the proposed PI-

ERT facial landmark localisation technique. The evaluation procedure and

performance metrics used for PI-ERT are the same as described for the ex-

isting landmark localisation techniques in the previous chapter. Five-fold

cross-validation is used, and results reported in terms of MNE, Success Rate,

and AUC.

38



Table 5.1: Baselines and optimal PI-ERT localisation performance.
(SFLW-NCA, #pert = 30 and #bins = 3).

Mean Shape ERT (SFLW-AUG) PI-ERT

MNE 0.139 0.050 0.045
Success Rate 0.46 0.90 0.94
AUC 0.858 0.942 0.949

5.3.1 Overall Performance

Comparison to Existing Methods

The proposed PI-ERT method is compared with the crude mean shape base-

line used previously, as well as the standard ERT model (as presented in

Chapter 4) trained on the SFLW-AUG dataset, which represents the current

state-of-the-art for animal facial landmark localisation.

Table 5.1 includes quantitative results for these baselines, along with the

optimally performing PI-ERT fitter (#bins = 3). Figure 5.4 shows the cu-

mulative MNE distributions for the same. The impact of the pose-informed

method is clear; MNE is reduced significantly and Success Rate and AUC

are markedly increased. The MNE curves also clearly demonstrate the im-

provement that PI-ERT makes over the standard ERT models.

Figure 5.5 shows qualitative fitting results for the images features previously

in Figure 5.2. It is clear that the PI-ERT makes significant improvements in

most of these cases. The right-most image also fails using the PI-ERT fitter,

estimated yaw angle for this image is inaccurate likely leading to this failure.

Further qualitative results for the PI-ERT fitter are shown in Figure 5.6.

Accurate facial alignment is achieved across a wide variety of poses, image

resolutions and breeds of sheep.

39



Figure 5.4: Baselines and optimal PI-ERT cumulative MNE distributions.
(SFLW-NCA, #pert = 30, #bins = 3).
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Figure 5.5: Example failure cases for the standard ERT fitter and
improvements made by PI-ERT. Rows show ground-truth, standard ERT

fitting results and PI-ERT fitting results from top to bottom. The
right-most column shows an example where PI-ERT also fails.
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Figure 5.6: Qualitative results for optimal PI-ERT fitter. (SFLW-NCA,
#pert = 30, #bins = 3).
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Table 5.2: 3-bin PI-ERT with horizontal mirroring and 6-bin PI-ERT
without horizontal mirroring localisation performance metrics.

(SFLW-NCA, #pert = 10).

3-bin PI-ERT
6-bin PI-ERT

(no mirroring)

MNE 0.050 0.054
Success Rate 0.91 0.90
AUC 0.948 0.943

Impact of Horizontal Mirroring

Table 5.2 shows the results for 3-bin PI-ERT (with mirroring) compared with

6-bin PI-ERT (without mirroring), both trained using the same dataset and

parameters. For all metrics 3-bin PI-ERT with mirroring outperforms the

equivalent setup without mirroring, this can only be a result of the increased

number of training images per fitter obtained via the mirroring process. Mir-

roring images horizontally is therefore demonstrated to not only reduce stor-

age requirements, but also result in improved performance.

Error Distribution

Next, the impact of PI-ERT on the distribution of error relative to head

pose is considered. Figure 5.7 shows the MNE distribution by absolute yaw

angle for the standard ERT fitter (as shown previously in Figure 5.1), along

with that for the PI-ERT fitter. MNE is reduced across almost the entire

range of angles, though is still larger for high magnitude angles. For angles

between 45 and 80 degrees, however, there is a noticeably more significant

reduction in error than for lower magnitude angles. This demonstrates that

the PI-ERT method does prove effective in tackling large pose variation.

Finally, MNE for individual landmarks is considered, as shown in Figure 5.8.

Error for all landmarks is lower using the PI-ERT fitter compared with the

standard ERT fitter. The three landmarks on the top of the head show the

least change, with only very marginally reduced error. Most notably reduced
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Figure 5.7: MNE distribution, using 5 degree bins, for optimal PI-ERT and
standard ERT fitters. (#pert = 30, #bins = 3)
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are the landmarks representing the nose, mouth and chin and those for the

ears. Though the error for ear landmarks is significantly reduced, these still

show the highest error of the landmarks, along with those on the side of the

face.

5.3.2 Effect of Number of Bins (#bins)

As mentioned above, the selection of the value of #bins can have a large

impact on the performance of the technique due to the trade-off between the

training set size and bin selection accuracy, and the fitter pose specificity. In

this section, the impact of varying the value of #bins for PI-ERT with fixed

#pert is evaluated.

Figure 5.9 shows the variation in MNE and Success Rate for values of #bins

from 1 to 8. As expected, values towards the middle of this range achieve

the lowest MNE and highest success rate. For higher values of #bins , e.g.,

8, the bin width is only around 10 degrees. Given the MAE of the head pose

estimation network is around 6 degrees, the number of bin selection errors

in this case is likely to be high. Likewise, the number of training images in

each of these narrow bins for higher pose angles is very low (order of tens of
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Figure 5.8: MNE for each landmark using PI-ERT fitter (blue) overlaid on
errors for standard ERT fitter (red). The larger the red area visible for a

landmark, the greater the improvement made by PI-ERT.

images), even for augmented datasets.

At the opposite end of the range, there are plenty of training images per bin

and bin selection accuracy is likely to be high, but there is little gain in terms

of fitter specificity. A single fitter is still having to deal with the difference in

image data between a head pose of 0 and a head pose of 45 or more degrees,

for example.

As Figure 5.9 shows graphically, #bins = 3 is found to be the best setting for

this use case. With a significant reduction in performance for lower #bins ,

and a more gradual reduction in performance for increasing #bins . The

results for #bins = 1 and #bins = 8 are almost equivalent, it is probable

that any higher values of #bins are even less effective. Models used for

evaluation of PI-ERT throughout this section therefore use #bins = 3.

It is important to note that selection of this value for #bins is driven by

the characteristics of the SFLW dataset. For other datasets with a greater

representation of extreme head poses, or for which a more accurate head pose

estimation technique is available, it is likely that a higher value of #bins will

result in improved performance.
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Figure 5.9: Effect of #bins on MNE and Success Rate for PI-ERT.
Optimal performance for both metrics achieved at #bins = 3.
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5.3.3 Effects of Data Augmentation

The effects of most augmentation methods are evaluated in detail for the

standard ERT fitter in the previous chapter. For the PI-ERT fitter the

effects are largely unchanged, so are not discussed in detail here. There is

one exception, however; the effect of NCA on the PI-ERT fitter is drastically

different from that described for the ERT fitter above.

NCA

In the previous chapter, NCA was found to provide little improvement over

the unaugmented dataset for the standard ERT fitter, in contrast to the

SFLW-AUG dataset which significantly improved performance. Table 5.3

shows the results for the PI-ERT fitter trained on the same three datasets;

here a different trend is observed.

As before, the SFLW-AUG dataset provides a significant improvement in

performance over the unaugmented SFLW dataset, but for PI-ERT this im-

provement is equalled when trained on SFLW-NCA. In fact, training on the

SFLW-NCA dataset results in a slightly higher success rate, though also a

marginally higher MNE and lower AUC. We are now faced with the question
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Table 5.3: Localisation performance for PI-ERT fitters trained on SFLW,
SFLW-AUG and SFLW-NCA datasets (#pert = 30, #bins = 3).

SFLW SFLW-AUG SFLW-NCA

MNE 0.053 0.044 0.045
Success Rate 0.89 0.93 0.94
AUC 0.942 0.950 0.949

Figure 5.10: MNE distributions, using 5 degree bins, for PI-ERT fitter
trained on SFLW-AUG and SFLW-NCA. (#pert = 30, #bins = 3)
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as to which of these datasets is actually better for training the PI-ERT fitter

given their near equivalent overall performance.

Figure 5.10 shows the distribution of MNE with respect to absolute yaw angle

for the PI-ERT fitter trained on the SFLW-AUG and SFLW-NCA datasets.

For lower yaw angles there is little apparent difference in error, with SFLW-

NCA resulting in marginally higher errors in some cases. However, for higher

magnitude yaw angles the difference is more pronounced; the SFLW-NCA

trained fitter produces notably lower MNE in these cases, with the exception

of only the 85–90 degree bin.

As such, the PI-ERT fitter trained on the SFLW-NCA achieves optimal per-

formance when tested on SFLW compared with all other fitters.
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5.3.4 Application to Human Faces

In order to assess the generalisability of the proposed pose-informed facial

alignment method, standard ERT and PI-ERT fitters are trained for facial

landmark localisation using a common human dataset, AFLW [29]. This

dataset is selected in lieu of an animal dataset or other human datasets for

two reasons. Firstly, the only other animal dataset [40] does not contain head

pose annotations or locations for occluded landmarks, so is not viable for use

with PI-ERT. Secondly, AFLW contains in-the-wild facial images with head

pose annotations and a much larger range of head poses than most other

human facial datasets.

However, the original AFLW dataset does not contain complete landmark an-

notations for images with occlusions. So the annotations generated by Smith

and Zhang [46] are used instead. This provides full 21 landmark annotations

for all images of the AFLW dataset. Ground-truth head pose annotations

from the AFLW dataset are used for the purposes of the evaluation, as Ruiz

et al. [43] have already demonstrated that highly accurate, landmark-free

head pose estimation is possible for humans, hence so is PI-ERT.

A semi-randomly selected subset of the full AFLW dataset is used, containing

1750 images, with 5-fold cross-validation used for evaluation. Sampling is

performed in a way that somewhat mimics the effects of NCA, with images

selected such that the distribution of absolute yaw angles for the resulting

subset is less skewed than the distribution of the original AFLW dataset.

No augmentation is performed, apart from perturbation of bounding-boxes

(#pert = 10). #bins = 3 is used due to its effectiveness on the SFLW dataset

as described above.

Table 5.4 shows the results for ERT and PI-ERT fitters trained on the de-

scribed subset of AFLW. PI-ERT outperforms the standard ERT fitter in

all metrics, indicating that this technique does generalise to other types of

subjects where head pose variation is significant—in this case, humans.
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Table 5.4: Standard ERT and PI-ERT localisation performance on a subset
of the AFLW dataset. (#pert = 10 and #bins = 3).

Standard ERT PI-ERT

MNE 0.059 0.056
Success Rate 0.87 0.90
AUC 0.939 0.941

5.4 Summary

This chapter first provides an analysis of the performance of the current

state-of-the-art method, ERT, and demonstrates that head pose variation is

the key factor in reducing effectiveness. Based on this, a novel pose-informed

method is proposed—Pose-Informed ERT, or PI-ERT—making use of the

head pose prediction network introduced above. PI-ERT is demonstrated to

improve significantly on the performance of the ERT fitter, achieving 0.045

MNE and 94% success rate. In contrast to the standard ERT fitter, NCA

is shown to improve the performance of the PI-ERT method, particularly in

reducing errors for more extreme head poses. An exploration of the effect of

the number of pose bins used shows 3 to be the most performant setting. The

PI-ERT fitter is also demonstrated to be effective in improving performance

for human facial alignment under large head pose variation using a subset of

the AFLW dataset [29] when compared with the same baseline method.
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Chapter 6

Deployment Pipeline

As described in Chapter 1, the end-goal of this research—and motivation for

improving facial alignment for animals—is for application to pastoral agri-

culture. Pain levels in sheep have been estimated effectively based on facial

imagery [33]. Integrating this into a CCTV monitoring system would allow

for detection of medical issues requiring further attention as early as possible,

rather than relying on the infrequent visits of veterinary professionals.

Based on this concept, a proof-of-concept pipeline is developed taking a pre-

recorded video as input. Sheep faces are detected automatically, and facial

landmarks are localised using the PI-ERT technique introduced in Chapter 5.

The example pipeline, therefore, demonstrates both the overall feasibility of

such a system, as well as the deployability of the proposed PI-ERT method

within a real-world application. This chapter describes the implementation

details of this pipeline and provides an evaluation of its effectiveness.
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6.1 Methodology

6.1.1 Face Detection

Face detection is an important aspect of the pipeline which has not been

explored already within this work. The dlib [27] HOG-based SVM object

detector [17] is used with three separate detectors trained: one for sheep

facing the camera, one for left-facing sheep and one for right-facing sheep.

This should enable improved detection accuracy across a range of head poses

where a single detector typically struggles to capture such large variation in

image data; a similar principle to that which motivates PI-ERT.

The images in the SFLW are annotated with additional bounding-boxes for

sheep in the background of the images which were not deemed suitable for full

landmark annotation. This is required as the training procedure treats non-

annotated areas of images as negative examples, so training is compromised

if unannotated sheep faces are present.

One-tenth of the resulting dataset is set aside for testing, the remaining

training set is manually split into three subsets: one containing left-facing

sheep, one for right-facing sheep and one for sheep facing the camera. The

left-facing sheep are also mirrored and included in the right-facing subset

and vice-versa.

6.1.2 Pipeline Architecture

A simple diagram of the pipeline is shown in Figure 6.1. The input video

frame is first run through the multi-pose face detector and any resulting

detections cropped from the full frame. Each detection is then resized to the

correct dimensions and passed into the head pose estimation network. This

provides a yaw angle between −99 and 99 degrees, if this is below 0 then the

frame is mirrored horizontally. The applicable fitter is then selected based

on the absolute predicted yaw angle and executed using the full input frame.
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Figure 6.1: Basic pipeline structure with example input and output images.
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Finally, the resulting landmark locations are mirrored back, if required, and

rendered onto the frame for output.

Within the pipeline, rudimentary tracking of bounding-boxes is used to

smooth transitions between frames and prune overlapping boxes. The pro-

portional overlap area of each pair of boxes in a frame is used to remove any

boxes with overlap factor greater than 0.6. Between frames, any two boxes

with an overlap factor greater than 0.8 are considered to correspond to the

same sheep face, so the positions of the two are averaged. This results in a

smoothed detection path where frames further in the past has ever decreasing

impact on the current bounding-box position.

As described above, the full PI-ERT localisation procedure is performed for

each detection in every frame, with no tracking of landmarks. This is clearly

an area of potential for improvement. It is likely that a production system

would use the head pose estimation network for fitter selection every few

frames as a form of checkpoint and rely on only the ERT fitter coupled with

some tracking method, such as [9], for intermediary frames.

6.2 Evaluation

In order to assess the effectiveness of the proposed pipeline, the following

evaluative section is broken into three parts. First, the performance of the

face detection method is considered for a test set composed of images from

the original SFLW dataset. Secondly, the overall qualitative performance

of the pipeline when applied to two example videos is considered, including
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Table 6.1: Face detection performance metrics.

Left Centre Right

Precision 0.32 0.96 0.56
Recall 0.11 0.45 0.14

face detection, as well as the resulting landmark localisation using PI-ERT.

Finally, the feasibility of the pipeline for real-time deployment is evaluated,

focussing on the run-time of each component when executed on an example

video.

6.2.1 Face Detection

The test set used for the sheep face detector described above is selected

randomly from the raw dataset and not split by pose as the training set

is. As such, it is composed primarily of frontal images with only a small

number of left- and right-facing images. The performance metrics of the

three detectors evaluated on this test set are given in Table 6.1. We would

expect recall values to sum to approximately 1 across the three, assuming

detections are unique, and for the central detector to have higher recall than

the left and right. The very low recall values in Table 6.1 are therefore not

as bad as they first appear. That said, the overall recall achieved is just 0.7,

clearly not as high as might be desired. Precision is also quite low for the

left and right detectors, indicating that false positives are common.

6.2.2 Overall Effectiveness

No ground-truth annotations for video files are available, so evaluation of

face alignment in this context is solely qualitative. Figure 6.2 includes some

example frames from two videos for which the full pipeline has been used.

As shown, facial landmarks of multiple sheep are localised effectively across

a number of different frames and for videos with very different lighting con-
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ditions.

Missing detections are relatively common and, to a lesser extent, false posi-

tives; detection is definitely one of the less successful elements of the pipeline

as suggested by the quantitative results above. Motion blur might be a large

factor in reducing the effectiveness of face detection, as well as landmark

localisation. Very few training images incorporate motion blur, though it

is common in the demonstration videos. Adding video frames with motion

blur to the training set would likely improve performance significantly. For

a fixed camera, such in the case of CCTV, motion blur might also be a less

common problem.

As shown quantitatively for the SFLW dataset in Figure 5.8 above, ears are

localised much less accurately in many cases. This might inform the focus

of future work in improving facial landmark localisation techniques for sheep

and similar animals.

6.2.3 Computational Feasibility

When applied to live video feeds the speed of operations within the pipeline

is a key concern. There are a number of steps in the pipeline: face detection,

head pose estimation, and landmark localisation, so real-time performance is

not a given. The times taken for the execution of each stage of the pipeline

are recorded across 500 frames of one of the videos used in Figure 6.2, at

approximately 700×400 pixel resolution. Measurements are made on a 2013

MacBook Pro (2.8 GHz Intel Core i7 16 GB 1600 MHz DDR3) with an

external NVIDIA GeForce GTX 1080Ti.

Detection takes on average 64ms per frame with around 1.1 bounding-boxes

found per frame. Head pose estimation requires 13ms and facial alignment

16ms per bounding-box. Therefore, each frame takes approximately 100ms to

process, equivalent to ∼10fps. This is lower than conventional video frame-

rate but is not unreasonable for a surveillance system.

It is also clear from these results that the detection step is the major bottle-
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Figure 6.2: Sample frames from two example videos run through the
demonstration pipeline.

Videos from YouTube, released under Creative Commons by Tim Berglund and Robert Smith.
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neck, taking four times as long as the landmark localisation step. There are

more time-efficient detection methods available, such as YOLO [41], which

could be exploited here given sufficient training data. Real-time performance

(30fps) is certainly realistic for such a system, provided slightly more powerful

hardware and time for fine-tuning the pipeline were available.

6.3 Summary

This chapter has demonstrated the applicability of the introduced PI-ERT

landmark localisation technique to real-time monitoring of livestock. An

example pipeline was implemented which detected sheep faces, estimated

the head pose and, using this information, localised the facial landmarks.

Implementation included the training of a multi-pose face detector to find

sheep faces within a video frame. Evaluation showed that there is significant

room for improvement in this aspect of the pipeline. Execution of the full

pipeline on two example videos proved to be effective qualitatively, in the

absence of ground-truth data to make a quantitative assessment. Timing

analysis showed the pipeline to execute at approximately 10fps, which is

close to real-time. This certainly serves as a proof-of-concept that such a

pipeline is feasible given adequate resources and an improved face detection

technique.
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Chapter 7

Conclusion

This project has provided an investigation into facial landmark localisation

and its application for animals, with a specific focus on sheep, for which

automated pain detection has been shown to be effective [33]. A new dataset

containing 850 images of sheep was annotated using a 25 landmark scheme,

much denser than previous schemes for animals [55, 40]. The dataset, Sheep

Facial Landmarks in the Wild (SFLW), incorporates a challenging mix of

images, with sheep exhibiting large variations in head pose and occlusion.

Per landmark occlusion information is also annotated, though not explored

in detail as part of this project. Robust landmark localisation for animals,

like RCPR [10] for humans, is definitely an area that might be of interest for

future work.

Due to the small volume of data, augmentation was of critical importance.

A novel image warping augmentation technique using TPS warping [5] was

introduced and shown to be effective in improving the performance of both

head pose estimation and landmark localisation. In addition to this, a neg-

atively correlated augmentation (NCA) technique based on head pose was

used for certain applications, similar to that proposed in [55]. These augmen-

tation methods could prove useful in similar scenarios where data is sparse.

In order to improve head pose invariance for landmark localisation, landmark-

free head pose estimation for animals was explored based on a CNN-oriented

56



technique for humans [43]. Fine-tuning this model on the SFLW dataset

proved effective, with an average absolute error of less than 7 degrees. Pose-

informed landmark localisation is a relatively unexplored area that could

prove fruitful given the high accuracy of current head pose estimation tech-

niques and increasing computational feasibility of such techniques.

Using this sheep head pose estimation network, a pose-informed landmark

localisation method based on the ERT [26] algorithm was developed, dubbed

Pose-Informed ERT (PI-ERT). This technique was shown to be effective in

reducing localisation error on the SFLW dataset compared with existing lo-

calisation methods, also evaluated as part of this project. An overall success

rate of 93% and mean normalised error of 0.045 were achieved, with per-

formance particularly improved for sheep with more extreme head poses.

PI-ERT also proved effective for human facial alignment using a subset of

the AFLW dataset [29]. Ears were localised quite poorly due to the large

range of positions they can take relative the rest of the head. Future work

might focus on this as an area to most effectively reduce localisation error.

In order to demonstrate the feasibility of applying this form of localisation in

a real-world setting—for example, as part of a surveillance system for moni-

toring livestock health on a farm—a pipeline including face detection, head

pose estimation and pose-informed landmark localisation was constructed

and tested on a number of pre-recorded videos. Near real-time performance

was achieved on relatively modest hardware, with visually successful fitting

results. Sheep face detection requires significant improvement to produce a

truly deployable application, though this is a problem that could be read-

ily solved through increased experimentation and greater data volume. The

demonstrated pipeline certainly served as a proof-of-concept that this form

of application is eminently feasible using techniques such as those proposed

in this project.
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