
2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII)

Pose-Informed Face Alignment for Extreme Head
Pose Variations in Animals

Charlie Hewitt
Department of Computer Science and Technology

University of Cambridge
Cambridge, UK
ac@chewitt.me

Marwa Mahmoud
Department of Computer Science and Technology

University of Cambridge
Cambridge, UK

marwa.mahmoud@cl.cam.ac.uk

Abstract—Landmark localisation is a vital step in automatic
analysis of facial expressions of animals. Head motion is one of
the most challenging problems for face alignment for humans
and animals. For animals this is exacerbated by the increased
amounts of self-occlusion resulting from variations in head
pose. In this paper, we present a novel model for detection of
an extensive set of facial landmarks for sheep. A dataset of
850 sheep facial images, annotated with a 25 facial landmark
scheme and occlusion information, is introduced: the Sheep Facial
Landmarks in the Wild (SFLW) dataset, including a wide range
of variations in head-pose and occlusion. Data augmentation
techniques are introduced using thin-plate-spline warping and
negatively correlated augmentation to boost representation of
extreme head poses. We then present a novel pose-informed
landmark localisation method based on a fine-tuned CNN model
for human head pose estimation. This method is shown to
significantly outperform the existing state-of-the-art approach on
the introduced SFLW dataset and the viability of the technique
for real-world use is demonstrated through the implementation
of a near real-time video pipeline.

Index Terms—animal face alignment, facial landmark locali-
sation, head pose estimation, ovine affect

I. INTRODUCTION

Automatic analysis of facial expressions of animals can
assist in early diagnosis of many diseases and help to improve
animal welfare. Automated systems can be used to detect
medical issues that require further investigation as early as
possible, rather than relying on infrequent veterinary evalua-
tions of animals. Previous work in this area has shown that
distress in sheep can be reliably predicted from a number of
facial action units [19]. A key component of this process is the
localisation of a number of landmarks—for example, the eyes,
ears or nose—on the face of the sheep in order to identify the
changes in these facial features.

Facial landmark localisation is a well-explored problem
in humans [22], but existing work tackling this problem
for sheep [26] and horses [24] only considers very sparse
landmarks and relatively minimal head pose variation, as well
as achieving less than ideal accuracy. For human face align-
ment, landmark localisation has progressed mostly because of
the availability of large annotated datasets that have allowed
for better training of models. As a new field, animal facial
expression analysis is yet to benefit from such large and varied
datasets. As such, pose variation is a much more significant

problem in animal face alignment due to the limited amount
of data.

In this work, we present a model for improving facial
alignment performance by first predicting the head pose of
the sheep directly from the input image, and then using the
estimated pose to aid in the localisation process. We demon-
strate that this, given the relatively small dataset, improves face
alignment results significantly. We also detect a denser set of
landmarks (25 landmarks compared to 8 in [26]) which allows
for more accurate action unit extraction and subsequent facial
expression analysis and emotion detection. We also consider
increased head pose variation in training data to improve the
resilience of the proposed model when deployed in-the-wild.

The main contributions of this paper are as follows:
• Presenting the SFLW dataset and annotation and aug-

mentation techniques used to boost the dataset variation
and improve representation of less common and more
challenging pose variations. This is the first sheep dataset
that includes annotation for 25 facial landmarks.

• Implementing a novel pose-informed landmark localisa-
tion approach for 25 landmarks on the sheep face.The
proposed approach is demonstrated to outperform state-
of-the-art methods when applied to sheep.

• Describing an in-depth experimental evaluation of the
proposed pose estimation and landmark localisation ap-
proaches, showing that our approach outperforms the
current state-of-the-art on the SFLW dataset and can be
deployed in a near-real-time pipeline.

II. RELATED WORK

Face alignment for humans is a long-standing problem
in computer vision and has been tackled in a number of
ways over the past decade or more. Older approaches form
separate shape and appearance models from training data
which are matched to a test image by solving a non-linear least
squares problem [7]–[10], [18]. Later, Regression methods
were introduced. Cascaded Pose Regression [11] (CPR) was
the first of these methods, in which a cascade of regressors is
trained to iteratively refine an estimate of landmark locations
starting from a rough initial guess. Robust CPR [5] (RCPR) is
a variation that can also regress an occlusion value (binarised
from a continuous prediction between 0 and 1) and uses

978-1-7281-3888-6/19/$31.00 ©2019 IEEE



multiple initialisations and alternative feature extraction to
improve performance. Explicit Shape Regression [6] (ESR) is
another technique very similar to CPR aimed at high efficiency.

The current widely accepted state-of-the-art in terms of
classical facial alignment is a technique using an Ensemble
of Regression Trees [14] (ERT). This approach is efficient (up
to 10000 fps) and highly accurate. A cascade of regressors
are learnt via gradient boosting with a squared error loss
function and, unlike other techniques, features are extracted
directly from the image using an exponential prior. Modern
deep learning methods [4], [23] achieve extremely impressive
performance for human face alignment, but are not directly
applicable in our case given the limited availability of data.

There has so far been little work looking at facial landmark
localisation for animals. Eight facial landmarks are detected
from sheep faces in [26] using a modified version of ERT with
triplet interpolated feature (TIF) extraction. Pain recognition
from sheep faces is analysed in [19] based on the same
landmark localisation method.

Transfer learning is explored in [24], which focuses primar-
ily on horses, but also utilises the dataset of [26]. Standard
transfer learning is demonstrated to have limited effectiveness
for inter-species facial alignment and a two-stage pipeline
proposed which involves first warping the input image to more
closely match human proportions, then localising landmarks
with a fine-tuned CNN. This method can only deal with
landmarks defined within standard human annotation schemes
(i.e., not ears, which are critical for sheep). An alternative deep
learning approach is presented in [3] with application to cat
and dog faces, as well as humans with limited comparison to
any baselines to verify the effectiveness of the approach.

Head pose estimation is a significantly less well-explored
problem in computer vision than landmark localisation. A
number of classical techniques for human head pose estimation
have been proposed [17], [20]. Recently, deep learning has
been applied to both landmark localisation and head pose esti-
mation for humans, often combined into a single network [23].
Specific networks have also been designed to determine only
the head pose of humans from images [25], aiming to be more
efficient than the often very large, multi-function networks and
with impressive results. Despite this, it is most common in
practice to estimate head pose indirectly based on the results
of classical facial landmark localisation techniques.

Because sheep landmark localisation methods are not as
mature and due to data scarcity, we consider the inverse
procedure. Rather than calculating head pose from localised
landmarks, we improve facial alignment performance by first
predicting the head pose of the sheep directly from the
input image, and then using the estimated pose to aid in the
localisation process.

III. THE SHEEP FACIAL LANDMARKS IN THE WILD
(SFLW) DATASET

One of the main issues faced in facial landmark localisation
for animals is that of data sparsity. The sheep dataset used

Fig. 1. Original (red) and new (blue) sheep facial landmark annotation
schemes and ground-truth annotations for example image from the SFLW
dataset.

in [26] includes 600 images annotated with only eight land-
marks. Another animal facial landmark dataset is used in [24]
for horses and it includes 3717 images annotated with just five
landmarks. This is in stark contrast to humans facial datasets,
such as Multi-PIE [13] (750,000 images with 68 landmarks),
Menpo [27] (over 10,000 images with 39 landmarks) and
AFLW [16] (25,993 images with 21 landmarks).

The SFLW dataset is composed primarily of images used
in [26], with an additional 250 photos collected from the inter-
net (total of 850 images). An annotation scheme containing 25
landmarks is devised based on the original eight-point annota-
tion used in [26]. The original and updated schemes are shown
in Figure 1, along with an example annotated image showing
which facial features the landmarks relate to. The new scheme
is approximately based on human annotation schemes with
additional emphasis placed on the ears, which are typically
excluded from human face alignment but are critical for most
animals. The eyes, nose and mouth are represented by eight
landmarks, with a further eight representing the ears and the
remaining nine corresponding to the face boundary.

Annotation was performed in a semi-automated manner,
with landmark position predicted by calculating the thin-
plate-spline transformation [2] between the neutral eight-point
positions and the existing annotations from [26] and applying
the same transformation to the neutral 25-point positions.
These predictions were then manually fine-tuned to ensure
high accuracy. The proposed denser landmark scheme should
enable more precise extraction of action units for use in affect
determination algorithms, such as that introduced in [19].

A number of data augmentation methods are utilised to
increase the effective size of the SFLW dataset from the raw
850 images. Horizontal mirroring, rotation and translation are
all well-established methods of data augmentation for machine
learning applications. We utilise two additional techniques:
image warping using thin plate spline (TPS) transformations
and negatively correlated augmentation (NCA).

In order to avoid repeating identical images when training
localisation models, TPS warping [2] is used to generate slight
variations on input image data by translating the annotated
landmarks using hand-crafted rules and warping the associ-
ated image accordingly. These variations are visually subtle



but should allow for more general representations of image
features to be learnt. TPS warping is able to simulate changes
in ear position as well as providing low magnitude pose and
face-shape variation.

In addition to this, negatively correlated augmentation
(NCA), as introduced in [26], is used to deal with the imbal-
ance in head poses present in the SFLW dataset. Many images
were sourced from the internet, so include primarily frontal
faces, but in real-world applications of this technology it is
expected that a roughly uniform distribution of head poses will
be observed. NCA boosts the augmentation factor for images
with extreme head poses in order to reduce the imbalance
within the dataset, and is parameterised to somewhat retain
the underlying distribution.

In the experimental evaluation below, two variants of the
base SFLW dataset are used. SFLW-flip contains horizontally
mirrored versions of every image, and SFLW-NCA uses hor-
izontal mirroring, TPS warping and rotation augmentations,
with the number of times each original image is used weighted
by NCA. The SFLW dataset (and augmented variants) are
available upon request.

IV. POSE-INFORMED FACIAL ALIGNMENT

Landmark-free head pose estimation enables accurate yaw,
pitch and roll to be determined from arbitrary images of sheep
faces. This information can be used to improve the perfor-
mance of facial landmark localisation by specialising a number
of models to specific head poses. This is particularly beneficial
for sheep in the case of variable yaw as, due to the elongated
nose, self-occlusion completely alters the 2D projection of the
sheep’s face recorded by a camera. We therefore propose a
pipeline where head pose is first determined from an image,
and then face alignment is performed by a tailored model,
enabling more accurate localisation performance.

A. Head Pose Estimation

Transfer learning from a deep, human head pose estimation
network is employed to create a model capable of sheep head
pose estimation. The Hopenet network from [25] is selected
due to its design focus specifically for head pose estimation. It
also has the best performance of the networks trained in [25].
A Hopenet model pre-trained on the 300W-LP dataset [28] is
used as the base model.

In order to determine ground-truth head pose for the images
in the SFLW dataset a 3D base landmark model is manually
defined with neutral head pose (0 yaw, pitch and roll) and av-
erage head shape. A RANSAC [12] based method for solving
the perspective-n-point problem is then used to recover the
approximate head pose using the 3D points of this landmark
model and the 2D annotated landmarks for each image. The
six landmarks representing the edges of the ears are excluded
from this correspondence as they typically move relative to the
rest of the face. The intrinsic camera parameters are estimated
based on the image size and lens distortion is assumed to
be negligible. While the generated ground-truth poses are

not exact, they provide a very good approximation and are
sufficient for this application.

The base model is fine-tuned on the SFLW-NCA dataset
with additional augmentation provided by randomly flipping
the input images in the x-direction and translating the image
by up to ∼7% in the x- and y-directions (as in [25]). A similar
training process to that in [25] is employed, using the Adam
optimiser [15] with default parameters. The model is trained
in batches of 16 over 16 epochs, chosen as validation loss
plateaus towards the end of this period. A low initial learning
rate of 0.0001 is used as the model is only being fine-tuned and
not trained end-to-end. The learning rate is also reduced by
a factor of ten halfway through training. The model with the
lowest validation loss during training is selected for evaluation.

B. Landmark Localisation

The introduced Pose-Informed ERT (PI-ERT) method is
based on the highest performing currently available method
(ERT [14]), as explored in the following section. The training
set is first partitioned based on the absolute yaw angle for
that image, with right facing images mirrored horizontally to
ensure all sheep face in the same direction. A separate ERT
model is then trained for each of these partitions.

For an arbitrary test image, the head pose is first predicted
and the image mirrored if the sheep is facing right. The appro-
priate ERT model is then selected based on the magnitude of
the yaw angle and executed to localise the facial landmarks.
The image (and landmarks) are then mirrored back if required.

There is some trade-off in choosing the number of parti-
tions; with fewer partitions the pose estimation task can be
easier and each partition is likely to have enough training data.
With a greater number of partitions, each fitter should be able
to achieve higher performance as it is more closely tailored to
a specific range of angles, but this relies on highly accurate
head pose predictions and each partition may lack training
data. For the SFLW dataset three was found to be the most
effective number of partitions.

V. EXPERIMENTAL EVALUATION

To evaluate our techniques we use five-fold cross-validation
for all experiments and report the mean. When augmented
datasets are used, the augmented training fold is selected such
that it contains variants of training images only. The resulting
models are then evaluated on the unaugmented test fold with
identical folds used for head pose estimation and landmark
localisation. That is to say that no test image (or a variation
of) has been used in the training phase of any model within
the pipeline.

A. Head Pose Estimation

To evaluate the sheep head pose estimation model a number
of metrics are employed. Mean absolute error (MAE) is
typically used [25] but it is not sufficient on its own. For
example, a model always predicting the mean of a dataset
with little deviation will often perform well in this metric.
As such, Pearson’s Correlation Coefficient (PCC) is also



Fig. 2. Qualitative head pose estimation results for network trained on SFLW-
NCA and tested on SFLW. Head pose is visualised as a 3D axis at the centre
of the image.

TABLE I
HEAD POSE ESTIMATION RESULTS FOR NETWORK TRAINED ON

SFLW-NCA AND TESTED ON SFLW COMPARED WITH BASELINE.

Dataset Mean Fine-tuned Model

Yaw Pitch Roll Ave Yaw Pitch Roll Ave

MAE 15.73 11.88 8.36 11.99 6.04 7.58 6.13 6.58
PCC 0.00 0.00 0.00 0.00 0.91 0.56 0.40 0.75
SAGR 0.50 0.57 0.50 0.52 0.78 0.83 0.77 0.80

used to assess the correlation of predictions with the ground
truth, arguably a better measure of a model’s usefulness. In
addition, Sign Agreement metric (SAGR) [21] is used to give
a coarse indication of simply whether the prediction matches
the general direction (left or right/up or down) of the head
pose. This is a significant attribute when considering pose-
informed landmark localisation.

Qualitative results are shown in Figure 2 and quantitative
results given in Table I. The overall performance is very
good considering the relatively small dataset and clear visual
difference between human and sheep faces. An average MAE
of under 7 degrees is achieved, with PCC as high as 0.9 for
a single angle (yaw) and 0.75 overall; qualitative results for
extreme head poses are also accurate. Results are reported for
SFLW-NCA as this dataset achieved the best performance.

B. Landmark Localisation

For all our experiments on facial landmark localisation,
three evaluation metrics are used: 1) mean normalised error
(MNE): the mean across the dataset of the average normalised
error, that is the Euclidean distance of a predicted landmark to
the ground truth landmark divided by the mean edge length of
the bounding-box, averaged across all landmarks, 2) Success
rate: the proportion of the dataset with an MNE under 10%,
and 3) AUC: the normalised area under the cumulative MNE
distribution. Clearly, for MNE lower is better and for success
rate and AUC higher is better.

Existing implementations of state-of-the-art classical facial
alignment methods—ESR [6], (R)CPR [5], [11], ERT [14]
and TIF [26]—are modified to incorporate the 25 landmark
annotation scheme used for the SFLW dataset. The modified
implementations are then trained and tested on our dataset and
predicted landmarks are exported to a common format. These
predictions are then loaded within the Menpo framework [1]

TABLE II
QUANTITATIVE PERFORMANCE METRICS FOR EXISTING LANDMARK
LOCALISATION METHODS TRAINED ON SFLW-FLIP AND TESTED ON

SFLW.

Mean Shape ESR CPR RCPR TIF ERT

MNE 0.139 0.090 0.065 0.061 0.058 0.054
Success Rate 0.46 0.73 0.86 0.86 0.85 0.88
AUC 0.858 0.907 0.932 0.937 0.939 0.943

TABLE III
BASELINE, ERT AND PI-ERT LOCALISATION PERFORMANCE FOR

MODELS TRAINED ON SFLW AND SFLW-NCA, BOTH TESTED ON SFLW.

No Augmentation Full Augmentation
Mean Shape ERT PI-ERT ERT PI-ERT

MNE 0.139 0.062 0.053 0.050 0.045
Success Rate 0.46 0.83 0.89 0.90 0.94
AUC 0.858 0.933 0.942 0.942 0.949

allowing for an identical evaluation procedure. The mean
shape of the dataset is projected into the facial bounding box
with no fitting to serve as a baseline.

Results for localisation performance of these existing
method for the SFLW dataset are given in Table II. ERT [14]
achieves the highest results in all metrics and consequently
forms the basis of our method. Interestingly, the TIF method
which was developed previously specifically for sheep [26]
does not perform as well, this is likely due to the higher density
of landmarks (25 vs 8) used in the SFLW dataset.

Quantitative results for the PI-ERT method are compared
with the baseline and current state-of-the-art (ERT) in Ta-
ble III. The proposed method improves notably over the state-
of-the-art both with and without data augmentation, with an in-
crease in success rate of 4 and 6% respectively and significant
reductions in both MNE and AUC. Qualitative results shown in
Figure 3 support this, showing clear improvements for the PI-
ERT method, with landmark locations approaching the ground-
truth positions. The data augmentation techniques described
above also provide notable improvements in performance for
both ERT and PI-ERT.

Figure 4 shows the distribution of MNE for the ERT and PI-
ERT methods. PI-ERT reduces MNE across almost the entire
range of yaw angles, but notably results in a flatter distribution
of error demonstrating that extreme head poses are dealt with
significantly better by this pose-informed approach.

C. Application

As a proof of concept, the trained PI-ERT model was
deployed in a complete pipeline to process videos of sheep.
As a pre-processing step, a simple HOG-based face detection
model [10] is used to detect the sheep face. For successfully
detected faces, head pose estimation took on average 13ms
per frame, and facial alignment 16ms for a 700×400 pixel
image on a consumer laptop1 with external NVIDIA 1080Ti

1MacBook Pro 2.8 GHz Intel Core i7 16 GB 1600 MHz DDR3



Fig. 3. Qualitative examples of landmarks localisation improvements made
by PI-ERT. The right-most column shows an example where PI-ERT struggles
with some landmarks due to inaccurate head pose estimation. Rows (from top
to bottom): ground-truth, standard ERT and PI-ERT.
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Fig. 4. MNE distribution for optimal PI-ERT and ERT fitters.

GPU. Face detection was a bottleneck in this pipeline, with
an execution time >50ms per frame. This could be improved
significantly using alternative face detection techniques and a
larger dataset of images annotated with facial bounding boxes.
Developing better sheep face detection models is one of our
directions for future work.

Despite the low performance of the face detection step,
the full pipeline ran at near real-time (∼15fps) for prere-
corded videos on this modest hardware. This is suitable for
most surveillance and monitoring applications, and real-time
performance could easily be achieved on currently available
commercial hardware. Figure 5 shows results for a sample
frame extracted one of our test videos. Qualitative results
showed the resilience of the method to motion blur, which
is likely to occur in real-world videos.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced the Sheep Facial Landmarks in
the Wild (SFLW) dataset, containing 850 in-the-wild images of
sheep faces annotated with 25 landmarks and binary occlusion
information. Driven by the small volume of data available,
image warping and negatively correlated augmentation tech-
niques were used to augment the dataset, with evaluation

Fig. 5. Sample frame from example video run through landmark localisation
pipeline showing the robustness of the approach for real-world data. Although
detection performance is limited, landmark localisation results are accurate for
successfully detected faces.

showing a significant improvement in landmark localisation
performance as a result.

A novel pose-informed landmark localisation method (PI-
ERT) based on a fine-tuned CNN head pose estimation net-
work pre-trained for human head pose estimation was also
introduced. The proposed approach achieved an average head
pose estimation error of under 7 degrees and improved land-
mark localisation performance significantly over the current
state-of-the-art, especially for sheep faces exhibiting extreme
head pose variations. In addition, the PI-ERT method was
demonstrated in conjunction with sheep face detection in near
real-time as a proof-of-concept for surveillance applications
on video feeds.

Analysis of per-landmark localisation error showed ears to
have generally the lowest localisation results. Thus, future
work might focus on improving the ability of models to
deal with these landmarks which vary significantly in position
relative to the rest of the face and which are critically important
given the application domain. Face detection was also a
limiting factor in deployment of the pipeline for real-world
use, improved sheep face detection would, therefore, also be
a useful avenue of investigation. Since this is the first model
to detect an extensive set of landmarks (25) on the sheep face,
ultimately we would like to use it to enhance facial action unit
detection and pain detection models, extending on the work
in [19].
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