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Abstract

This paper presents a hybrid classification tech-
nique using Gaussian processes (GP) fitted on
features extracted by a convolutional neural net-
work (CNN) to enable estimation of prediction
confidence. The hybrid classifier is shown to out-
perform the base CNN for the MNIST dataset.
The variance values predicted by the GP are
demonstrated to be useful in estimating signifi-
cance of classifications and confidence intervals.
A similar approach is evaluated for a simple re-
gression task and shown to be markedly less ef-
fective. Finally, the implications of such confi-
dence measures are discussed for real-world ap-
plications.

1. Introduction
1.1. Motivation

Convolutional neural networks (CNN) provide state-of-the-
art performance for a large number of image-based ma-
chine learning (ML) tasks such as segmentation, classifi-
cation and regression. CNNs typically achieve very high
accuracy, but give no real indication of confidence in their
predictions.

CNNs are particularly popular for medical applications and
have already been applied to a number of medical imaging
problems (Litjens et al.). For example, detecting brain le-
sions (Kamnitsas et al.) and volumetric segmentation for
MRI scans (Milletari et al., 2016), as well as for the task of
drug discovery (Wallach et al., 2015).

For medical contexts in particular, it is critical to have a
measure of confidence in a prediction, as an error may be
life threatening. At present the CNN models used do not
provide this measure of confidence, a fact which is rightly
reducing the willingness to adopt these new technologies
within medicine. There is clearly great potential for im-
proved patient care through the use of ML technologies,
and confidence in the predictions of these models is a key
factor in enabling this.
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While medicine is one of the most obvious fields where
confidence is critical, there are of course many other chal-
lenges to which CNNs have been applied where confi-
dence is important. One example being the many vision
related tasks involved in autonomous driving, such as ve-
hicle and sign detection (Li et al., 2016; Sermanet & Le-
Cun, 2011), as well as semantic segmentation (Cordts et al.,
2016; Garcia-Garcia et al., 2017). For almost all applica-
tions a measure of confidence is at least useful, for deep
neural networks (DNN) in general, not just for CNNs.

Consequently, the concept of augmenting a conventional
CNN with an ML model which provides confidence mea-
sures is considered. The aim being to exploit the perfor-
mance of CNN models for image-based tasks, while also
gaining a indication of prediction confidence. Gaussian
Processes (Rasmussen, 2004) (GP) are an obvious candi-
date to provide this confidence measure, due to their mathe-
matically rigorous derivation and consequent ability to pre-
dict meaningful variances. One key benefit is that GPs do
not extrapolate prediction confidence, so a new data point
which is far from the observed data should be indicated by
a low prediction confidence, unlike for CNNs which typi-
cally construct a hard decision boundary.

1.2. Contributions & Paper Structure

The contributions of this paper are threefold:

• Evaluation of classification confidence estimation
methodologies using hybrid CNN/GP classifier on the
MNIST dataset and the effects of noise and adversarial
perturbations on these confidence metrics.

• Investigation into confidence measures for regression
tasks using a hybrid CNN/GP regression model.

• Discussion of the implications of the proposed confi-
dence estimation techniques for real-world problems.

The remainder of Sec. 1 includes a description of the pre-
vious work related to confidence in CNN and DNN predic-
tions. A summary of the hybrid classifier implementation
is given in Sec. 2 and Sec. 3 includes the results for the sys-
tem when evaluated on a number of variants of the MNIST
dataset. A discussion of the implications is given in Sec. 4,
along with suggestions for future work and a brief conclu-
sion.
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1.3. Related Work

Confidence in ML models is typically represented as a pre-
diction interval (PI), that is the range in which a value is
predicted to fall with some confidence, typically 95%. A
number of methods for estimating these PIs for neural net-
works (NN) have been proposed (Khosravi et al., 2011),
many originating from the mid 1990s, though surprisingly
little recent development has occurred.

The bootstrap method (Efron, 1992; Heskes, 1997) is the
most commonly used method for estimating PIs. An en-
semble of NNs are trained on varying subsets of the training
set, the output is then taken as the mean of the predictions
from each NN, and the variance calculated directly from
these predictions. The bootstrap method generates rela-
tively poor quality PIs, typically overestimating variance,
but with highly reproducible results. It is quite computa-
tionally efficient depending on the number of NNs used.

The Bayesian approach (Bishop, 1995; MacKay, 1992) in-
volves modelling NN parameters as a set of random vari-
ables with some prior distributions, and the output of each
layer as having some posterior distribution. From this,
the output distribution can be calculated, with the vari-
ance estimated by approximating the Hessian matrix of
the cost function. The resulting PIs are of generally good
quality and are highly reproducible, though this method is
very inefficient for large datasets and networks. There has
been some more recent work devising efficient Bayesian
CNNs (Gal & Ghahramani, 2015) which may improve the
feasibility of this approach.

The delta method (Hwang & Ding, 1997; De Vleaux et al.,
1998) interprets neural networks as a non-linear regression
model, this allows the application of asymptotic theories to
construct PI. The PIs generated using this method are gen-
erally of high quality, but repeatability is poor and in some
cases the resulting PIs are inaccurate. This method is also
computationally intensive which is a particular problem for
large networks like CNNs.

Mean value expectation (MVE) (Nix & Weigend, 1994)
makes use of two separate NNs to predict the mean and
variance of the output distribution independently, this can
then be used to calculate PIs. The mean network can be
trained ordinarily, but as the variance is not know for each
training sample, the variance network is trained using a
maximum likelihood estimation approach. As only two
networks are required, MVE is significantly more compu-
tationally efficient than other methods, but the quality and
repeatability of the PIs generated are poor and unreliable
for real-world applications.

Most of these methods are not realistically applicable to
the large CNNs and DNNs typically used today, or pro-
duce very poor quality PIs that serve little use in real-world

scenarios. As such, alternative methods have been pro-
posed, such as the hybrid of NNs and GPs featured here.
This method is typically quite efficient as only a single NN
model needs to be trained, followed by the fitting of a GP,
typically in a relatively small feature space outputted from
and intermediate layer of the NN.

GPDNN (Bradshaw et al., 2017) is the primary work in
this relatively unexplored area, focussing on comparison
between a conventional CNN and a hybrid GPDNN (a
CNN with soft-max layer replaced by a GP, trained end-
to-end). The authors evaluate the relative performance of
these models on standard datasets and the impacts of ad-
versarial examples in great detail. They do not, however,
provide much in terms of discussion of the implications of
the PIs that GPs inherently provide.

2. Implementation
2.1. CNN

A basic CNN is used for the purposes of this investigation,
one typical of designs used for classification on the MNIST
dataset (Lecun et al., 1998). Two convolution layers (32
and 64 deep with 3 × 3 kernels) are followed by a single
max-pooling layer, a single fully connected layer with 128
nodes and finally a 10 node, fully connected layer with soft-
max activation to output classification results. Dropout is
used to prevent over-fitting and ReLU activation (Nair &
Hinton, 2010) for all layers except the final classification
output.

The CNN is implemented using Keras (Chollet et al., 2015)
and trained over 32 epochs with a batch size of 128 us-
ing the Adam optimiser (Kingma & Ba, 2014) with default
parameters. To generate features for use by the GP, the
output layer is removed from the model, leaving a 128 di-
mensional output vector from the previous fully connected
layer.

2.2. GP Classification

GPFlow (Matthews et al., 2017) is used to train and eval-
uate all GPs used for this investigation. Due to the large
volume of data (60000 training examples), two implemen-
tations of scalable GP classifiers are employed.

Sparse variational GP (SVGP) (Hensman et al., 2015b)
scale the standard GP model within a variational inducing
point framework. This drastically reduces training time and
memory requirements, as well as improving results for very
large datasets.

Sparse variational GP using MCMC (SGPMC) (Hensman
et al., 2015a) instead approximate both the function values
and covariance parameters simultaneously using a Markov
chain Monte Carlo sampling scheme. This allows for repre-
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Figure 1. n-MNIST example images from http://csc.lsu.
edu/˜saikat/n-mnist/.

(a) AWGN (b) Motion blur (c) Reduced
contrast and

AWGN

sentation of non-Gaussian posterior distributions and there-
fore theoretically superior models, as well as enabling use
of very large datasets.

In both cases hyper-parameters are determined automati-
cally using GPFlow’s optimisation procedure. Ten latent
GPs are used for MNIST classification and for both im-
plementations every 50th item in the training set is used to
provide the inducing points. This gives a good trade-off
between performance and training time.

2.3. Classification Datasets

For classification, the standard MNIST dataset (Lecun
et al., 1998), containing 60000 28 × 28 pixel, black and
white training images, and 10000 similar test images, of
handwritten digits from 0 to 9 is used.

In addition to this, the noisy MNIST (n-MNIST)
dataset (Basu et al., 2015) is used to asses the resilience of
the classifier to a number of input image distortions. Exam-
ples from the n-MNIST dataset are shown in Fig. 1; vari-
ants include additive white Gaussian noise (AWGN), mo-
tion blur and reduced contrast with AWGN.

Each of these variants contains the same images as the orig-
inal dataset (60000 training, 10000 test) with the described
distortions applied. The CNN and GP models, though, are
not retrained using the n-MNIST training sets. Both mod-
els are trained on MNIST and evaluated on all four test sets
without retraining.

2.4. GP Regression

In order to also evaluate the proposed technique for regres-
sion tasks, a variant of the MNIST dataset is generated. For
each image containing a number 4 in the original dataset,
10 variants are generated, rotated by a random angle be-
tween -180 and 180 degrees. Examples of such images can
be seen in Fig. 2. The resulting dataset (referred to as r-
MNIST) contains 58420 training images and 9820 test im-
ages. The task is then to determine the angle by which each
image has been rotated; the number 4 was chosen due to its
lack of rotational symmetry.

Figure 2. Three example r-MNIST rotated images generated for a
single original MNIST image.

Orig. −83◦ −175◦ 62◦

For this purpose a sparse Gaussian process regression
(SGPR) (T, 2009) model is used, which utilises a sim-
ilar variational formulation for sparse approximations to
SVGP. Again every 50th item in the training set is used
to provide the inducing points.

3. Results
3.1. Kernel Selection

A number of different GP kernels can be used, these are
evaluated with an SVGP model for the MNIST dataset as
well as the three n-MNIST variants. Results are shown in
Table 1; the polynomial kernel outperforms all others for
all datasets apart from n-MNIST-C for which the linear ker-
nel achieves the highest accuracy. The RBF, Matern32 and
Mater52 kernels also provide very poor variance predic-
tions which are not useful for confidence estimation. As
such, polynomial kernels are used for the rest of the inves-
tigation.

All results are for isotropic kernels; GPFlow provides an
ARD option to enable different length scales for each input
dimension, though this negatively impacted performance.
Adding a white Gaussian noise kernel also had no positive
effect on performance, perhaps surprising given the noise
introduced to the n-MNIST input images.

A number of multi-kernel models were also investigated,
none of which improved upon the performance of the stan-
dard polynomial kernel. GPFlow ordinarily shares the
same kernel between all latent processes, an alternative
model using a separate kernel for each latent process was
evaluated, but did not improve performance. A variety of
summed kernels were also investigated, though again had
no positive impact.

3.2. Model Selection

Comparative results for the two available GP implementa-
tions, SVGP and SGPMC, are given in Table 2 along with
the CNN baseline performance. SVGP has the best perfor-
mance, broadly equalling the CNN baseline, and in some
cases slightly outperforming the original soft-max classi-
fier.

SGPMC seems to fit the noiseless data better (achieving
significantly higher accuracy on MNIST and n-MNIST-B),

http://csc.lsu.edu/~saikat/n-mnist/
http://csc.lsu.edu/~saikat/n-mnist/
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Table 1. Performance for various kernels on the MNIST dataset and n-MNIST variants.

Linear RBF Poly Matern12 Matern32 Matern52

MNIST 0.9890 0.9803 0.9905 0.9894 0.9539 0.9669
n-MNIST-A 0.9324 0.8609 0.9351 0.9320 0.6847 0.7640
n-MNIST-B 0.9495 0.8735 0.9592 0.9550 0.7786 0.8240
n-MNIST-C 0.7339 0.4821 0.7222 0.6811 0.1910 0.2535

Table 2. SVGP and SGPMC results compared with CNN baseline
for the MNIST dataset and n-MNIST variants.

CNN SVGP SGPMC SGPMC*

MNIST 0.9906 0.9905 0.9916 0.9912
n-MNIST-A 0.9293 0.9351 0.8762 0.9052
n-MNIST-B 0.9588 0.9592 0.9771 0.9640
n-MNIST-C 0.7200 0.7222 0.5973 0.6948

* With added white noise kernel.

Table 3. Percentage of predictions GP classifier is confident in,
and accuracy when questionable predictions are discarded.

Base Acc. Confident % Confident Acc.

MNIST 0.9905 0.9804 0.9962
n-MNIST-A 0.9351 0.8569 0.9820
n-MNIST-B 0.9592 0.9377 0.9850
n-MNIST-C 0.7222 0.5345 0.9023

but struggles with the AWGN of n-MNIST-A, and even
more so when the contrast is also reduced as in n-MNIST-
C. Adding a white noise kernel to the basic polynomial
kernel significantly improves the resilience of the SGPMC
model at a slight cost for the noiseless datasets. Even this
setup still fails to equal the overall performance of SVGP.
SVGP models are therefore used for the remainder of the
investigation.

3.3. Classification Confidence

The immediate use case for the prediction variances pro-
vided by the GP classifier is to determine whether a clas-
sification is significant. This is easily achieved for a given
confidence interval, here we consider the 95% confidence
interval, so take a range of 2σ around the prediction. This
is visualised for two example images in Fig. 3.

Fig. 3a shows a very confident classification for an image
containing a 5, matching what we would expect based on
the image. Fig. 3b shows a prediction for class 9, which is
sensible based on the image, though with a signifiant de-
gree of uncertainty, such that the most likely class may in
fact be 5. This is presumably because the loop of the 9 is
not complete resulting in some level of ambiguity.

Figure 3. Predicted class probabilities and 95% confidence
bounds (clipped to [0, 1]) for two example items from the MNIST
dataset.

(a) Confident classification (n = 5)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

n

P
(n
)

(b) Questionable classification (n = 5 or n = 9)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

n

P
(n
)

Table 3 shows the percentage of predictions the GP clas-
sifier is confident in for each dataset, i.e., those for which
the lower bound of the highest class probability does not
overlap the upper bound of any other class probability. The
right hand column gives the accuracy if the questionable
predictions (those for which the classifier is not confident)
are discarded. The accuracy in this case is significantly
higher than the base accuracy for the full dataset. This in-
dicates that in general if the classifier is confident then the
prediction is more likely to be correct, and when the classi-
fier is unsure then the prediction is more likely to be incor-
rect (i.e., this measure of confidence is indeed meaningful).

The variance provided by the GP is entirely dependent on
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Table 4. Percentage of predictions CNN classifier is confident in,
and accuracy when questionable predictions are discarded.

Base Acc. Confident % Confident Acc.

MNIST 0.9906 0.9737 0.9977
n-MNIST-A 0.9293 0.6982 0.9956
n-MNIST-B 0.9588 0.7882 0.9962
n-MNIST-C 0.7200 0.1606 0.9950

the prediction probability; it is simply defined as σ2 =
p− p2. Applying this directly to the CNN prediction prob-
abilities is therefore considered. The results are given in
Table 4 and are noticeably different to those for the GP
classifier. The CNN is confident in significantly fewer pre-
dictions (just 16% for n-MNIST-C), but is almost always
correct for the classifications in which it is confident (over
99.5% in all cases).

This concept therefore seems to provide some meaning-
ful information for both classifiers, with an unsurprising
trade-off between the proportion of ‘confident’ classifica-
tions and the accuracy of those predictions. The results for
the CNN are perhaps more desirable, though usability is
drastically reduced. The GP makes a significant number of
incorrect, confident predictions, but retains better usability
and is Bayesian in its derivation. These factors are explored
further in Sec. 4.1. Increasing the range considered for
significant GP classifications to a value greater than ±2σ
might improve GP prediction significance.

3.4. Variance Distribution

Confidence can also be inferred based on the distribution of
predicted variances for correct and incorrect classifications.
These distributions are shown for each dataset in Fig. 4.
It is clearly visible, as suggested above, that the predicted
variance does correlate to the accuracy of each prediction.
Correct predictions are typically very confident (i.e., have a
very low variance), while incorrect classifications typically
have a larger, less predictable variance.

From these distributions it is also possible to estimate con-
fidence intervals. For predicted class, Cp, actual class, Ca,
and some standard deviation, γ:

P (Cp = Ca | σ < γ) ≈
(
1 +

P (σ < γ | Cp 6= Ca)

P (σ < γ | Cp = Ca)

)−1

A confidence value for a specific prediction can, therefore,
be predicted from its standard deviation. Or an estimate of
σ for some given confidence interval can be made using an
iterative process. For the above datasets, the 95% confi-
dence intervals are given by σ ≈ 0.04354, σ ≈ 0.04724,
σ ≈ 0.04353 and σ ≈ 0.04370 respectively. The variabil-
ity in these values indicates that, while these measures may

Figure 4. Distribution of predicted σ for correct (green) and in-
correct (red) classifications for MNIST and n-MNIST datasets.

(a) MNIST
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(b) n-MNIST AWGN
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Figure 5. Example CleverHans perturbed images (ε = 0.15).

Figure 6. Classification performance and confidence for Clever-
Hans perturbed images.

CNN Acc. 0.7352
GP Acc. 0.7477
Confident % 0.7246
Confident Acc. 0.8293

be valid for that specific test set, they are not transferable;
this is discussed further in Sec. 4.1

A similar procedure can be carried out using prediction
probabilities directly, and equivalently for CNN prediction
probabilities. Both these techniques yield less discrimi-
natory distributions, so any inferred confidence is signifi-
cantly less useful.

3.5. Adversarial Perturbations

Adversarial perturbations (AP) are explored in detail
in (Bradshaw et al., 2017), but there is little considera-
tion of the of AP effect on confidence. Here AP for the
MNIST test set are generated using the CleverHans (Paper-
not et al., 2017) implementation of the fast gradient sign
method (Goodfellow et al., 2014). A value of ε = 0.15
is chosen to generate visually insignificant alterations, as
shown in Fig. 5.

These perturbations, though, have a significant impact on
classification performance (given in Fig 6). The GP classi-
fier slightly improves on CNN accuracy, though it is clear
that the alterations to the input images cause significant
confusion. Comparing with n-MNIST-C in Table 3, it is ap-
parent that the number of predictions for which the classi-
fier is confident is much higher for AP (72% compared with
53%), but the accuracy when only looking at the confident
predictions is much lower (83% compared with 90%). The
GP classifier is therefore selecting incorrect classes with
high confidence more often when considering AP, so pro-
vides significantly less benefit in terms of confidence.

This is supported by the distributions shown in Fig. 7,
which are significantly less separable than those for
MNIST and n-MNIST. Taking σ < 0.04353, which pro-
vides 95% confidence for n-MNIST-C above, the confi-
dence is now reduced to just 87%. It seems, therefore, that
AP which fool the CNN also succeed in fooling the GP
classifier.

Figure 7. Distribution of predicted σ for CleverHans perturbed
images.

0 0.1 0.2 0.3 0.4 0.5

σ

Figure 8. Regression performance metrics for the r-MNIST test
set.

CNN GPR

RMSE 0.1320 0.1043
CORR 0.9740 0.9835

3.6. Regression

For the regression task described in Sec. 2.4 the GP slightly
outperforms the CNN, both in terms of RMSE and correla-
tion, as shown in Table 8. The predicted σ values, though,
provide little information as to the accuracy of a given pre-
diction as demonstrated by the lack of any correlation in
Fig. 9.

There is, therefore, little information about confidence
gained for this regression task. While the predicted vari-
ance does not correlate to error in this case, it is informa-
tion that is not provided at all by a CNN. It may be the case
that for some tasks variance and error do correlate and so
can be used to determine a meaningful confidence measure
for predictions.

Figure 9. Absolute error against standard deviation for all 9820
images in the r-MNIST test set.

Absolute Error

σ
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Figure 10. Keras-vis generated images for each number 0–9.

0 1 2 3 4

5 6 7 8 9

4. Discussion
4.1. How confident can we be?

Sec. 3 demonstrates that, for classification at least, GPs
seem to provide useful information about the confidence
of their predictions. We are then faced with the question of
how confident we can be in these confidence measures.

First, another form of adversarial image are considered;
these are inspired by the demonstration that CNNs can
be easily fooled using nonsensical images (Nguyen et al.,
2015). Images which maximise the CNN output activation
for each class are generated using Keras-Vis (Kotikalapudi
& contributors, 2017), shown in Fig. 10. While some re-
semble the numbers they are derived from, these images
are clearly very different to the MNIST images used for
training, and in a number cases unrecognisable.

Unsurprisingly, the GP classifier also predicts the associ-
ated classes with very high confidence despite the differ-
ences to the MNIST training images. Continuing this av-
enue of investigation, completely nonsensical images are
input to the classifier. For images containing entirely ones
and entirely zeros, the classifier is not confident in its pre-
diction (the desired behaviour), but images containing ran-
dom noise pose a problem.

Out of 1000 such noise images, the hybrid classifier makes
confident predictions in 43% of cases. Clearly this number
of confident predictions for images that contain no struc-
ture resembling numeric digits whatsoever is highly unde-
sirable and largely undermines the purpose of the method
as a whole. Using the same process for the CNN as ini-
tially described in Sec. 3.3 gives more promising results,
with just 8.8% of classifications of nonsense images being
confident, suggesting that the hybrid GP classifier may ac-
tually be less effective in this case.

As demonstrated in Sec. 3.4, confidence measures for one
dataset cannot be transferred reliably to a dataset with even
very similar characteristics. If the training and test sets en-
compass the full scope of input data then the confidence
measures produced would likely prove valuable. For real-
world systems this is usually very hard to verify, so would

limit the feasibility of applying this method for any useful
purpose. After all, it is perhaps better to have system which
provides no confidence measure, and is therefore viewed
with scepticism, than a system which can make an incor-
rect prediction with a high confidence.

4.2. Future Work

There is a lot of scope for further work on CNN confidence
using GPs, and potentially the CNNs directly, or other clas-
sifiers. Evaluating the technique on problems which more
closely resemble real-world tasks and the medical appli-
cations described in Sec. 1.1 is clearly an important step
towards wider adoption. Most large CNNs use a greater
number of nodes in the final hidden layer, and have a larger
number of classes, both of which may affect the feasibility
of using a GP classifier.

There is also work to be done in improving the resilience
of the classifier to adversarial and nonsense inputs. This
is critically important for practical applications, as any
datasets used for training and testing are almost certain to
exclude some edge cases which need to be identified as
problematic if they occur once the model is deployed.

Regression tasks are another area requiring improvement.
Prediction variance would be very useful if it could be
demonstrated to give some real indication of the accuracy
that can be expected for a specific example.

4.3. Conclusion

This paper presents an investigation into CNN classifica-
tion confidence estimation using GPs. A hybrid classifier
using a GP trained on features from the final hidden layer
of a CNN is used to make classifications which carry an
associated confidence. The classifier is evaluated on the
MNIST dataset and a number of variants incorporating dif-
ferent distortions.

The hybrid classifier is shown to perform equally or better
than the CNN on which it is based. The predicted variance
values are demonstrated to be meaningful in determining
whether a given prediction is significant, as well as in es-
timating confidence intervals based on the distribution of
predicted standard deviation. A brief exploration of CNN-
only classification confidence is shown to be effective for
some techniques, and adversarial perturbations are found
to have a significant negative impact on confidence estima-
tions.

A similar confidence estimation approach is evaluated for
a simple regression task and shown to be markedly less ef-
fective than for classification. Finally, the implications of
the confidence measures obtained for the MNIST dataset
are discussed in the context of real-world application, and
the limitations highlighted.
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