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“Mathematical analysis and computer modelling are revealing to us that the shapes

and processes we encounter in nature – the way that plants grow, the way that mountains

erode or rivers flow, the way that snowflakes or islands achieve their shapes, the way that

light plays on a surface, the way the milk folds and spins into your coffee as you stir it, the

way that laughter sweeps through a crowd of people – all these things in their seemingly

magical complexity can be described by the interaction of mathematical processes that are,

if anything, even more magical in their simplicity.”

— Douglas Adams, Dirk Gently’s Holistic Detective Agency
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Chapter 1

Introduction

1.1 Motivation

In this project I intend to develop a system for the procedural generation of highly detailed

3D models of trees and similar plants for use in computer generated imagery (CGI).

In recent years CGI has become increasingly prevalent in the entertainment industry;

improvements in technology have enabled increasingly large scale and complex scenes to

be constructed. Consequently there has been a greater desire to provide fast, effective

ways of producing assets which can be used in these scenes. With the significant presence

of plants in the real world, it is not surprising that there is a high demand for botanical

assets. Therefore, finding a simple a way to generate large numbers of realistic plant

models would be of great benefit to artists working on film and game environments.

My aim is to implement a system which can produce models of a wide variety of

tree species in a pseudo-random manner. I have chosen to create two systems employing

alternative techniques with the intention of comparing these approaches and the results

achieved. I will be implementing systems based on Aristid Lindenmayer’s fractal based

method [PL90], and Weber and Penn’s parametric approach [WP95], both described in

detail below. I also hope to improve the design process of a tree model for the artist by

utilising techniques such as dimensionality reduction and genetic algorithms to simpli-

fy/automate some aspects of the task.

1.2 Related Work

There is a reasonable volume of existing work in this field. The most successful commercial

offering being SpeedTree [Inc], a software package designed specifically for generating

plant models for use in games and film. There has also been activity in the research

community and a number of completely different approaches to tackle the problem have

been suggested.

11



12 CHAPTER 1. INTRODUCTION

1.2.1 Lindenmayer-Systems

One technique is the use of Lindenmayer-systems (L-systems), proposed by Przemyslaw

Prusinkiewicz and Aristid Lindenmayer in their iconic book of 1990, The Algorithmic

Beauty of Plants [PL90] and first described in the latter’s paper of 1968 [Lin68]. L-

systems build on the well recognised self-similarity of natural structures, as popularised

by Mandelbrot [Man82], using a fractal style approach to the modelling process. Smith

employed this technique with impressive results at Lucasfilm [Smi84], though it has fallen

out of favour in recent years.

I have chosen to implement a tool based on L-systems, with the aim of incorporating

modern techniques not available at the time they were most popular. The principle

aspects of L-systems are described in more detail in §2.3.1.

1.2.2 Parametric Approach

Honda was the first to propose representation of trees through the use of a number of sim-

ple parameters [Hon71]. This approach was adopted by Aono and Kunii for the purpose

of generating 3D models [AK84]. Oppenheimer also began to incorporate this method

[Opp86], though both still made use of fractal based structures resulting in somewhat

unrealistic models.

Weber and Penn later introduced a much more comprehensive parametric description

for tree models with impressive results [WP95]. Their system recursively constructs a

3D model based on a list of numeric input parameters. Existing implementations such

as Arbaro [Die15], a standalone Java app which outputs to standard 3D file formats, and

Sapling Tree Add-on [Hal], a plugin for Blender, have been quite successful.

I have chosen to implement a system based on Weber and Penn’s approach given its

relative ease of use and impressive visual results. An overview of Weber and Penn’s model

is given in §2.3.2 and all parameters are outlined in Appendix C.

1.2.3 Modular Approach

Another more recent approach is to construct a tree model from a number of smaller

blocks, often manually modelled or 3D scanned from real trees. The blocks are arranged

and merged in a manner such that each join is contiguous, and the resulting complete

tree model is therefore visually pleasing. This allows for very highly detailed and visually

interesting model with many complex elements, but limits the scope of generation to those

tree sections that have been obtained manually.

Impressive results have been achieved using this method [Xie+15], and Modular Tree

Add-on for Blender [MD] uses many aspects of this approach, but I have decided not to

focus on this method as it requires a significant library of modelled/scanned tree parts

which I am not able to easily obtain.
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1.2.4 Space Colonisation

A completely different system was proposed more recently by Runions et al., this involved

the modelling of trees using a space colonisation algorithm [RLP07]. The algorithm uses

a botanically informed growth process to colonise an enclosing envelope, and was greatly

improved by Pa lubicki et al. [Pa l+09].

There have since been a number of successful implementations, such as TreeSketch

[Lon+12] and SpaceTree Add-on for Blender [And]. The results produced using this

method are certainly comparable in realism to those of Weber and Penn’s approach, but

due to time limitation I have decided not to tackle space colonisation in this project.

1.2.5 Botanical Simulation

A somewhat less prominent method is to attempt to accurately model the growth process

of the tree in order to create a 3D model. De Reffye et al. achieved relative success with

this method [Ref+88], though there has been little work in this direction recently. This is

likely due to the computational complexity of modelling the growth process, when com-

parable visual results can be achieved with much simpler models such as those proposed

above. Consequently I have decided not to explore this approach.
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Chapter 2

Preparation

2.1 Requirements Analysis

2.1.1 Use Cases

There is currently a great need in the visual effects industry to create virtual represen-

tations of the real world, including natural objects such as trees, for use in films, games

and static renders. At present these tree models must be created manually by an artist,

or generated using commercial systems very similar to those which I intend to develop.

Bespoke modelling by an artist is slow and expensive due to the highly skilled nature of

the work. My proposed system will allow generation of highly detailed tree models in a

much shorter time, without requiring any skill beyond basic use of the Blender application

[Foua].

For a tree that features prominently in a scene, an artist may wish to augment the

generated model with bespoke elements or more detail, but the vast majority of the mod-

elling work has been automated, reducing the overall cost drastically. In many scenarios

the model will be suitable as generated; one particular scenario where there is a clear

benefit is in the generation of large groups of trees in the form of woodlands or forests.

Previously every tree would need to be modelled separately, or identical trees repeated,

with my method a huge number of similar but unique trees can be generated very easily

giving a much improved visual result.

2.1.2 Goals

More in depth research of the field has enabled me to refine and better specify my success

criteria, breaking them down into subgoals that can be more measurably attained. These

are as follows:

• Develop working tree generation system based on the L-systems approach.

– Implement stochastic, parametric L-systems representation in Python.

15
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– Devise parsing system to convert L-system output into basic geometry within

Blender.

– Enhance visual appearance of resultant model through refinement of parsing

system.

• Develop working tree generation system based on a purely parametric approach.

– Implement the core elements of the system outlined in Weber and Penn’s paper

using Python.

– Modify any aspects of the model which require it to facilitate incorporation

into a Blender plugin.

– Enhance any features of the model which I find to be lacking.

• Generate a series of test models which can be used for performance comparisons of

the two systems.

– A limited set of parameter lists are provided in Weber and Penn’s paper, and

others with existing implementations, these can be transcribed for use with

my system. A number of further parameter lists will have to be designed from

scratch.

– Very basic L-systems are described in The Algorithmic Beauty of Plants which

may provide a basis for my own. New bespoke L-systems will have to be devised

to represent a wide enough range of tree types.

The goals described above are now taken to include provision for leaf modelling which I

originally viewed to be an extension goal. I have also refined my other extensions:

• Investigate the use of dimensionality reduction for parameter lists with the aim of

enabling an artist to design trees for the parametric system more easily.

• Investigate automation of parameter list design using a genetic algorithm given an

image input. The scope of this would likely be quite restricted given the time scale,

though will hopefully serve as a proof of concept for automated parameterisation of

trees.

Ultimately I would like to assess which of the two systems I develop, L-system based or

parametric, provides the best overall performance. This will be judged primarily on visual

result, though generation time and complexity of use are also considerations.

2.1.3 Plan

The project is broken into three main implementation stages; for each I intend to employ

a spiral model of software development. First working on basic prototypes of the systems,

covering the most complex aspects of the implementation. Then iteratively improving

these until the system fully satisfies my implementation goals.
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L-Systems Implementation

• Develop versatile Python implementation of stochastic, parametric L-systems.

• Implement 2D parsing system for basic L-system definitions.

• Extend parsing system to 3D, first using just line segments then incorporating Bézier

curves.

• Augment parsing system with required features to encapsulate fully detailed tree

models.

• Devise series of L-system definitions to use as input to the parsing system which

describe a number of different tree types.

Parametric Implementation

• Translate general formulae presented in paper to Python.

• Basic implementation of parametric system using line segments to represent branches.

• Extend system to utilise Bézier curves to model branches, including bevelling of

branches.

• Further refine system, implementing more detailed aspects of the paper, and intro-

duce any modifications as necessary.

• Devise a number of parameter lists, to use as input to the system, which describe a

number of different tree types.

Extensions/Evaluation

• Carry out any final refinements to both systems.

• Develop any profiling tools required to evaluate the two systems.

• Investigate extension goals, with potential for implementing genetic algorithm to

devise parameter lists from image input.

2.2 Starting Point

To implement the system I chose to utilise Blender ’s built in Python scripting functional-

ity. Blender provides a full Python 3 interpreter within the application which can be used

to manipulate the modelling environment through calls to a number of libraries which are

also provided by Blender.

Specifically, I made use of Blender ’s Bézier curve modelling tools which require all

control points of the curve to be provided, as well as the bevel radii of these points, and

produce a 3D mesh of controllable resolution along the resulting curve—see Figure 2.1. I

also utilised the mathutils module for its implementation of basic data structures such as
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P1
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P3

P4

r1

r2

r3

r4 = 0

Figure 2.1: Bézier spline (red) and associated bevelled solid (black). Cross sections of

radius r1, r2, r3 and r4 (blue) shown at Bézier points P1, P2, P3 and P4

respectively—intermediate control points are omitted.

vectors and matrices, and their operators, in order to integrate seamlessly with the other

Blender libraries required. Standard Python modules such as random and math were also

used extensively.

2.3 Preparative Work

I had not used Python prior to the project so some initial work was required to familiarise

myself with the syntax and general programming conventions of the language. This did

not require a great deal of effort given Python’s relative syntactic simplicity, and the

familiarity of many general concepts covered by the Computer Science Tripos which are

present in the language.

Given that the primary objective of the project is to create realistic models of trees, I

took care to familiarise myself with some of the botany of trees. For this purpose Cassell’s

Trees of Britain and Northern Europe [MW03] proved an invaluable resource.

Effort was also required to understand the principles laid out in both Lindenmayer’s

Algorithmic Beauty of Plants, and Weber and Penn’s 1995 paper. The necessary theoret-

ical knowledge for each system is outlined below.

2.3.1 L-Systems

The formalism of L-systems was originally introduced to describe the structure of plants

in their most basic form, and resembles context free grammars. An axiom string, s, is

defined along with a set of production rules, pi, mapping an input character to a string

of output characters. The system is then iterated a number of times, starting with the

axiom. The characters making up the active string at each stage are replaced with the

output characters of the applicable production rule, if there is none then the symbol

remains unchanged.
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The following is a basic example of an L-system definition:

s : a

p1 : a 7→ bab

p2 : b 7→ c

Iterating the system we obtain the following output:

a

bab

cbabc

ccbabcc

...

Clearly this alone is not sufficient to model complex 3D plant structures. Lindenmayer

therefore extended the basic definition via the introduction of stochasticity; a production

rule can now be defined as a series of constituent mappings each with an associated

probability:

s : a

p1 : a
0.257−−→ ab

0.257−−→ ba

0.507−−→ bab

p2 : b 7−−→ c

This allows for far more natural structures as a degree of random variation can be intro-

duced across the system as a whole. We assume any production with a single constituent

mapping introduces no stochasticity, i.e., the probability for that mapping is 1. The prob-

abilities for the constituent mappings of any single production rule must of course sum

to 1.

Another way in which simple L-systems can be extended is through the introduction of

parameters. The parameters of a symbol can then be altered within a production rule, or

used as a condition on the production itself. This allows us to propagate useful information

through the system, which is critical when producing more complex structures:

s : A(1)

p1 : A(x) : ∗ 7→ A(x ∗ 2)B(0)

p2 : B(x) : x ≤ 3 7→ B(x+ 1)

p3 : B(x) : x > 4 7→ B(x− 1)

Where ∗ is used to indicate the lack of a condition, i.e., the production always applies.

These two augmentations can be combined to create a stochastic, parametric L-system.

Another possible extension of the formalism is context sensitivity, though in practice

stochastic parametricity is generally adequate to describe sufficiently complex structures.
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The output of the iterated L-system at this point, however, is just a string—possibly

with associated parameter values. This output string must therefore be parsed in order

to convert the symbols into some geometry which will make up the final tree model.

2.3.2 Weber and Penn

The approach of Weber and Penn considers only numerical parameters as input. The tree

is considered as a number of distinct levels of recursion; the first being the trunk, the

second the primary level of monopodial branches1, the third the child branches of these

and so on. They include a number of parameters to describe the tree model as a whole

such as the global scale, the number of levels of branching and the flare at the base of the

trunk. In addition to these are a series of level specific parameters, defined independently

for each recursive depth—suffixed [n] to indicate the parameter value at the nth level of

recursive branching. Many of these parameters are specified relative to the parent branch,

such as the length, while others are independent, such as the curve of the branch and the

angle it makes from its parent.

Dichotomous branching2 is also incorporated in the model, with stems able to be

‘cloned’ at a random point along their length. The two stems then continue to grow in

identical condition but using different random seeds. The overall shape of the tree can

also be controlled via modification of the first level branch lengths. This is achieved using

an overall shape parameter which takes discrete values based on predefined common tree

shapes3. In addition the shape can be modified by defining an enclosing envelope and

then iteratively shortening branches until they fit within this envelope, similar to the act

of pruning.

Leaves are included in the model, with their positioning and orientation determined

in the same manner as for stems. There is, however, a further modification to the leaves’

orientations—they are reoriented, depending on the fractional value of a parameter, to

face outwards and upwards from the centre of the tree—to emulate the effect that light

1Subordinate branches when central parent branch continues to grow unaltered, see Figure 2.2.
2Branching as a result of equal division of the terminal bud, see Figure 2.2.
3Conical, spherical, hemispherical, cylindrical, tapered cylindrical, flame, inverse conical and tend

flame—see Figure 2.4.

Figure 2.2: Monopodial (left) and dichotomous (right) branching.
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Figure 2.3: Tree diagram from Creation and Rendering of Realistic Trees, Jason Weber

and Joseph Penn. c©1995 ACM, Inc.

has on the growth of the tree.

There are many more parameters than described above which influence the resulting

3D model, Figure 2.3 taken from the original paper illustrates some of these, for a com-

plete description of all original parameters consult [WP95]. Brief descriptions of all the

parameters in my own implementation of the system, broadly similar to the originals, are

given in Appendix C.

The geometry of the model is built up recursively; each stem created as a series of

segments with all levels of branching for each segment are generated before moving on to

the next. This is necessary because many aspects of each stem are calculated based on

the attributes of the parent, for example the length of child stems is proportional to the

length of the parent.
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Figure 2.4: Quaking aspen generated using my parametric tool for each common tree

shape, with and without leaves.

2.4 Summary

My two tree generation tools will be developed using a spiral model of development. They

will be written in Python for use by artists within the Blender application as a plugin.

L-systems provide a simple formalism, similar to context free grammars, to help de-

scribe the structure of a tree. The implementation of these systems is described below in

§3.1, in addition to a full explanation of the parsing process to generate 3D models from

the resulting symbol string.

The parametric model of Weber and Penn is a more bespoke solution to the prob-

lem, further details on various aspects of the model and their implementation as well as

numerous additions and alterations are described in §3.2.
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Implementation

As described in §2.1.3, there are three key phases in the implementation of my project.

Firstly, the L-system based tool including both an abstract implementation of L-systems

and a parsing system to generate 3D models from the resulting symbolic representation.

Secondly, the parametric tool based on the model proposed by Weber and Penn [WP95]

with a number of modifications to improve realism. Finally, the exploration of exten-

sion goals including dimensionality reduction and use of a genetic algorithm to simplify

parameter list design.

3.1 L-Systems Approach

My L-systems tool consists of two primary phases; generation and parsing. In the first

phase an L-system grammar is iterated a number of times to produce an output string

consisting of L-system symbols and associated parameters. This string is then parsed, with

all symbols iterated over and actions taken based on their interpretation to construct the

output model.

In order to ensure the system is robust, my L-system implementation is as general

purpose as possible and the generation and parsing phases are completely independent.

So in theory an alternative parser could be developed which produces models in an entirely

different format to those which my parser currently does.

3.1.1 L-System Implementation

My implementation of L-systems in Python includes an LSystem class which contains the

current system state as a list of LSymbols. Each LSymbol is defined by a key character

and an optional parameter dictionary. The LSystem also stores a dictionary of production

rules, which map LSymbol key characters to a function which represents the production

rule associated with that symbol, as well as a number of universal parameters for the tree

such as leaf shape and tropism.

The LSystem is initialised with a production dictionary and an axiom, which is a list

of LSymbols. Every time the LSystem is iterated, the list of LSymbols currently stored

(initially the axiom) is walked over and the the production rule which corresponds to the

key of the current LSymbol is looked up and executed, replacing the current symbol with

23
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the result of executing that production rule. This may be a single LSymbol or a list of

many LSymbols, if no production rule exists then the LSymbol is left unchanged. As only

a single symbol is considered at a time, this implementation supports only context free

L-Systems, this greatly simplifies the implementation while retaining more than adequate

expressivity.

Production rules are defined as Python functions. This means that arbitrary code

can be executed in order to determine the output set of LSymbols the rule generates.

Stochasticity can therefore be introduced to the system through use of the random library

within these production rules. Productions rules are given the current symbol as input, so

the parameter dictionary of the symbol is also accessible. Parameter values can therefore

be modified and propagated through the system as well as used as conditionals within

the production rule.

This means that all aspects of the stochastic, parametric L-systems described in §2.3.1

can be easily translated. For example, the L-system with formal definition

s : A(1)

p1 : A(x) : ∗ 7−→ A(x ∗ 2)B(0)

p2 : B(y) : y ≤ 3
0.37−→ B(y − 1)

0.77−→ B(y + 3)

p3 : B(y) : y > 4 7−→ B(y)A(y)

becomes in Python:

1 def a_production(sym):

2 return [LSymbol("A", {"x": sym.parameters["x"] * 2}), LSymbol("B", {"y": 0})]

3

4 def b_production(sym):

5 res = [sym]

6 if sym.parameters["y"] <= 3:

7 if random () <= 0.3:

8 res = [LSymbol("B", {"y": sym.parameters["y"] - 1})]

9 else:

10 res = [LSymbol("B", {"y": sym.parameters["y"] + 3})]

11 elif sym.parameters["y"] > 4:

12 res = [LSymbol("B", {"y": sym.parameters["y"]}),

13 LSymbol("A", {"x": sym.parameters["y"]})]

14 return res

15

16 LSystem(axiom =[ LSymbol("A", {"x": 1})], rules={"A": a_production , "B": b_production })

As shown here, multiple productions for a single symbol are collapsed into a single Python

function definition which encapsulates all rules, conditioned as specified in the formal

definition.

3.1.2 Parsing

The 3D model is constructed from the symbols and associated parameters generated by

the first phase of the process using a parser. Predefined geometric interpretations for

various symbols are described using a turtle; these descriptions enable the final output

model to be constructed by the parser as a series of Bézier curves, with a polygonal mesh

used for leaves.
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Turtle Graphics

Turtle graphics in its simplest form describes a 2D turtle which stores its position and

direction as well as some state to describe its ‘pen’. The turtle can then be controlled

using these attributes and instructed to walk forward, drawing a line. I have used an

extension of this principle similar to that described in Chapter 2 of The Algorithmic

Beauty of Plants to enable use of a turtle in 3D.

The turtle’s orientation is represented using two vectors; the forward vector deter-

mines the direction in which the turtle faces, and the right vector specifies its roll about

the forward vector. These, along with the position vector, fully specify the turtle’s

geometric state. This can then be modified using pitch, turn and roll operations and the

standard walk forward command. Instead of a ‘pen’, only the current radius of the branch

being drawn is stored as an attribute of the turtle, which can also be set dynamically.

Symbol Interpretation

The following list defines all LSymbols which have predefined parsing interpretations and

their associated actions, all bold strings represent parameter names of the LSymbol in

question.

! Set turtle width to w.

F Move turtle forward by l and draw branch of this length, if leaves is non-zero

then distribute that number of leaves along the branch according to

leaf r ang and leaf d ang.

A or % Close end of branch, i.e., taper to 0 radius.

+ Turn turtle left by a.

- Turn turtle right by a.

& Pitch turtle down by a.

∧ Pitch turtle up by a.

/ Roll turtle right by a.

\ Roll turtle left by a.

L Create leaf according to d ang and r ang.

[ Start branch.

] End branch.

$ Reset turtle to vertical.

Most of these definitions are very similar to those given in The Algorithmic Beauty of

Plants, though some slight alterations have been made.

Model Construction

Interpreting the output of the L-system using a turtle and the symbol interpretations

outlined above provides a geometric representation from the input L-system grammar. A

3D model of the tree is then constructed from the basic position, orientation and thickness

information the turtle encapsulates. The action associated with the F symbol is key to

this, as it describes drawing a branch.
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The turtle’s motion as described above only allows for straight branch sections as

the turtle can only move forward in the direction it is currently facing. To achieve the

desired curved branches from the turtle geometry obtained during the parsing procedure

the current branch’s Bézier spline is extended by one point for each F encountered. The

position of the new point is given by the turtle’s position after moving forward by the

amount specified by the l parameter of the F symbol. The first point in each spline is

generated either when the trunk is first constructed, or on encountering a [, so there is

always a Bézier point prior to the one added when encountering a F.

When each new Bézier point is added to the spline the control points of the previous

point, the start point of the segment being constructed, are also updated. The difference

vector for the two control points nearest the start point (i.e., the tangent to the curve

at that point) is aligned with the direction of the segment being built and scaled to be

proportional to the length of the segment. The resulting branch therefore forms a smooth

curve. Some random variation in the segment direction can be introduced to create a

more natural winding appearance for the branch. The radius of the branch at the start

point is also updated to a linear interpolation of the radius at the point prior to the start

point and the turtle’s current radius value to ensure a smoothly tapering branch.

Branching

The [ and ] symbols also present an interesting challenge. It is necessary to keep track of

the series of turtle states in order to backtrack on completion of the new branch and we

also want to minimise the number of Bézier splines required to construct the tree (rather

than simply starting a new spline after backtracking). A stack is used to achieve this.

Whenever a [ is encountered a spline is created for the new branch, which is then

constructed as normal. When the [ is encountered a copy of the current turtle is also

placed onto the stack, along with the previously active spline. Upon encountering the

matching ], the current turtle and spline are discarded and the previous turtle and spline

restored by popping from the stack. Construction of the parent branch can then continue

on its original spline, restarting from the position at which the child was produced.

An edge case arises if a branch, or series of nested branches, is encountered which

contain no actual branch segments (F symbols). In this case the branch has no visible

geometric interpretation so can be ignored.

A flag is therefore used to track the validity of each branch, initialised to FALSE. Upon

encountering an F during traversal of the branch, the flag is set to TRUE. If the end of

the branch, ], is encountered while the branch is still indicated as being invalid then no

F is present within the branch so its spline can be safely removed. This flag must also be

placed on the stack each time a [ is encountered and restored with the matching ].

If the stack is ever empty then an unmatched end branch symbol, ], must have been

encountered, as the trunk (the spline created upon commencing parsing of the system)

should always remain on the stack. An exception is therefore raised as the input string to

the parser, and underlying L-system definition, must be invalid. Similarly, if after parsing

all symbols the stack contains more than just the trunk then an unmatched start branch

symbol, [, must have been encountered so again an exception is raised.
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Tropism

In order to enhance the realism of the model, I also included the concept of a tropism

vector, similar to that described by Lindenmayer in Chapter 2 of The Algorithmic Beauty

of Plants [PL90]. At the start of each branch segment, the current direction of the branch,
~D, is rotated towards the 3D tropism vector, ~T , specified as a parameter of the LSystem.

This is achieved by rotating ~D about the axis ~D × ~T by an angle, θ, proportional to

| ~D × ~T |, as demonstrated in Figure 3.1

This causes the tree to appear to grow as if acted on by a force in the direction of the

tropism vector, with the severity of this effect proportional to the length of the tropism

vector. We can therefore model trees which are affected visibly by gravity (downwards),

light (upwards) or a prevailing wind (lateral). The results of using this effect for the

parametric system can be seen in Figure 3.6.

θ = α| ~D × ~T |

~D × ~T

~D

~T

~D′

θ

Figure 3.1: Application of tropism ~T to branch of initial direction ~D with resultant

direction ~D′.

Leaves

For the modelling of leaves, Lindenmayer focuses primarily on smaller plants exhibiting

complex flowers and leaf shapes. He therefore suggests the use of symbols within the

grammar to generate custom polygons allowing leaves and flowers to be specified manually

within the L-system definition. This seems cumbersome for trees given that we are likely

to reuse the same leaf shapes at many points in the grammar and for many different tree

types. I have instead opted to use the same method as employed in the parametric system,

fully described in §3.2.2. Parameters are instead stored as attributes of the LSystem and

two methods of generating leaves are incorporated within the interpretation of L-systems.

A single leaf can be generated using the L symbol, with required parameters d ang

and r ang used to calculate its orientation—specifying the angle away from and around

the stem respectively. Alternatively, leaves can be generated along a stem using the

leaves parameter of the F symbol. This indicates that the specified number of leaves

will be distributed uniformly along the stem with leaf r ang and leaf d ang used to

calculate their orientations. The current rotation angle of the previous leaf around the

stem is stored as leaves are constructed along the stem, and incremented by leaf r ang

with each leaf, this allows leaves to be spread uniformly around the stem as well as along

it.
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As the output of the generation phase is parsed, each leaf is added to an array as a

position and orientation pair. After initial parsing is complete this array is iterated over

and the leaf mesh generated in an identical manner to that described in §3.2.2.

3.1.3 L-System Design

The fixed generation and parsing systems described above are in themselves fairly simple

and small in terms of volume of code. A large portion of the complexity of modelling the

tree is introduced within the definition of the L-system grammar, that is the axiom and

production rules, which is given as input to the system.

The design of the grammar can be intrinsically difficult as the geometric output we

desire must be encoded as a series of production rules which will be iterated. Code for such

grammars can become fairly large and complex, some examples are provided in Appendix

B.

3.2 Parametric Approach

My parametric tool uses a more integrated approach; a parameter list, in the form of a

Python dictionary, is given as input and the output model is constructed directly. Any

values missing from the input parameters are given default values (those of the quaking

aspen).

The branches are first constructed as a series of Bézier curves and then the leaves as

a polygonal mesh, using locations determined during branch generation. A significant

portion of the work was in translating the many definitions within Weber and Penn’s

paper into Python for use within the Blender plugin. Most effort, though, was focussed

on the generation of the output model from the values that these translated formulae

gave about the geometry of the tree. Some of the particular difficulties faced during

implementation of the tool are described below.

3.2.1 Branches

The paper suggests the use of transformation matrices to store orientation data at different

points in the tree as it is constructed. I have instead opted to re-use the turtle developed

for use with the L-system approach above as it provides a more intuitive representation

to work with while developing the system.

Originally the models were constructed as polygonal meshes directly using a series of

tapered cylindrical segments for each branch, as seen in Figure 2.3. I have instead chosen

to use Bézier curves to model branches, these allow for more smoothly curving representa-

tions and are very simple to specify.Blender also provides the ability to dynamically alter

the resolution of the Bézier curve after generation. This provides a major benefit in terms

of adaptive levels of detail, as previously the entire mesh would need to be regenerated

for each resolution.
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Without With

Figure 3.2: Effect of radius mod[n] parameter on weeping willow.

Branch Radius

The uniformly tapering cylinders of the original model can be replicated easily using

Blender ’s Bézier curve bevelling functionality (as in Figure 2.1). The model also includes

provision for flaring of the trunk near the base and non-uniform and periodic tapering

along the entire length of stems.

In these cases the ordinary behaviour—assigning radius at each of the Bézier points

in the branch, typically between 5 and 15, specified by curve res[n]— is not sufficient,

a higher resolution of radius control along the length of the branch is required. This is

achieved by evaluating the curve for each segment at a number of points spaced evenly

along its length and taking these as the new Bézier points, with their control points

determined by evaluating the tangent to the original curve at each point. The size of the

vectors to each new control point are rescaled in order to preserve the approximate shape

of the curve.

By carrying out this increase in resolution a much higher degree of control is gained

over the radius of extrusion along the curve, without noticeably affecting the path of the

curve itself. This operation is fairly expensive so is only performed for the trunk (as flaring

is necessary) and for branches which have a value of taper[n] which indicates periodic

tapering (see Appendix C).

Weber and Penn’s model does not allow for extraordinary changes in radius between

levels of branching, this was noticeably a problem for the weeping willow (Figure 3.2). I

have therefore introduced the radius mod[n] parameter which the original branch radius

value is multiplied by. For the weeping willow radius mod[2] = 0.1 is used so that the

secondary branches are significantly thinner and consequently more realistic.
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Figure 3.3: Alternate, opposite and whorled branching.

Branch Distribution

One major shortcoming of Weber and Penn’s model is the lack of any clear consideration

for how the child branches of a stem are distributed along its length. Looking at trees in a

botanical context, we observe three types of branch distribution along a stem: alternate,

opposite and whorled [Ken], as shown in Figure 3.3. Alternate is by far the most commonly

observed type of branching in trees; opposite monopodial branching is quite rare, though

perhaps useful for leaf distribution in some cases, and whorled branching is seen almost

exclusively in pine trees.

I have chosen to build the tree geometry using a recursive procedure, each stem is

built in a series of segments with all child stems for each segment built before moving on

to the next segment in the parent branch. This means that it is not necessary to keep

track of all stems and their parameters at a specific level in order to construct each level

iteratively. Instead, a recursive call is made for each child branch, stopping when the

maximum number of branching levels is reached.

The number of child branches per segment is calculated from the total number for the

branch as defined in [WP95, §4.3] using a method similar to Floyd-Steinberg error diffusion

[FS76]. The fractional offset for each child along the segment is then determined based

on the branching pattern (alternate, opposite or whorled) defined by branch dist[n]1.

Each child is then positioned by evaluating the Bézier curve between the start and end

points of the segment at the fractional offset for that child.

The child branch’s forward vector is determined by calculating the tangent to the

curve and then modifying this according to down angle[n], rotate[n] and the current

branching pattern. The right vector of the turtle must also be maintained, this is calcu-

lated based on the turtle orientation at the end of the segment and the child’s forward

vector.

rightchild = (forwardseg end × rightseg end)× forwardchild

This approximation is valid in general because the branches typically lie within the plane

normal to the right vector of the turtle at the end of the segment. If the branch does

not lie within this plane, due to a non-zero bend v[n] value, then this method still gives

a visually pleasing result while remaining easy to compute.

1A detailed explanation of branch dist[n] is given in Appendix C.
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In the case of helices the approximation is not valid, so to preserve a correct orientation

along the curve the child turtle’s right vector is instead taken as the cross product of the

tangent evaluated a short distance further along the curve with the child turtle’s forward

vector (the tangent at the original location). This ignores the roll of the turtle about the

branch at the start of the segment, but provides a consistent right vector along the helix,

so gives a good visual result.

The above method will, however, position the start of the child branch at the centre of

the cross section of the parent stem which can give poor visual results for children of stems

with a large radius. I therefore chose to shift the start position of the branches toward the

circumference of the parent. This is achieved by maintaining a turtle which is positioned

at the original start position of the child and is directed normal to the parent curve, at

the same rotation about the parent curve as the child’s direction. Then by moving the

turtle forward by an amount equal to the radius of the parent minus the radius of the

child, a new start position for the child is determined which is as close as safely possible

to the parent’s circumference.

Helical Branches

Weber and Penn’s parameterisation includes an option for stems which form a helical

shape, though the paper qualifies this quite poorly, stating only that “a special mode

is used when curve v[n] is negative. In that case, the stem is formed as a helix. The

declination angle is specified by the magnitude of curve v[n]” [WP95, §4.1]. No cur-

rently available implementations of the system include this functionality as it presents a

significant implementation challenge.

Firstly, a method to model helices using Bézier curves must be devised. Rǐskus presents

a method to fit a Bézier curve to a circle of radius r, drawing an arc on the circumference

through angle 2α [Rǐs06]. The curve is then defined by the points (in 2D)

b0 = (r cosα,−r sinα)

b1 =

(
4r − r cosα

3
,−(r − r cosα)(3r − r cosα)

3r sinα

)

b2 =

(
4r − r cosα

3
,
(r − r cosα)(3r − r cosα)

3r sinα

)
b3 = (r cosα, r sinα)

Where b0 and b3 are the endpoints of the curve, and b1 and b2 the control points.

To form a helix the z coordinates of these points must also be determined. The

definition of a helix parameterised by t states that z = pt
2π

for any point on the helix,

where p is the pitch of the helix. An arc through angle 2α will therefore rise by αp
π

. So

the z coordinates of the endpoints are given by:

b0z = −αp
2π

b3z =
αp

2π
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The z coordinates of the control points, however, are considerably more complex.

Juhasz proposes a method where these z coordinates are constrained such that the oscu-

lating plane of the curve at the end of the initial segment is common with the osculating

plane at the start of the next segment [Juh95]. This retains G2 continuity and gives the

following:

b1z = −(r − r cosα)(3r − r cosα)αp

r sinα(4r − r cosα) tanα

b2z =
(r − r cosα)(3r − r cosα)αp

r sinα(4r − r cosα) tanα

For this application, I found that a value of π
2

for α was sufficient to give an adequately

high resolution Bézier curve, and simplifies the calculation significantly, resulting in the

Bézier points:

b0 =
(

0,−r,−p
4

)
b1 =

(4r

3
,−r, 0

)
b2 =

(4r

3
, r, 0

)
b3 =

(
0, r,

p

4

)
The input parameters r, the radius of the helix, and p, the pitch must also be

calculated. The paper states that the declination of the helix is |cure v[n]|, so θ =

90 − |cure v[n]| is taken as the angle (in degrees) the tangent to the helix makes with

the plane whose normal is the axis of the helix. It follows that

tan θ =
b1z − b0z
b1x − b0x

as b1y = b0y. Which gives

r =
3p

16 tan θ

The length of the branch L = length[n] is defined within the input parameters, as is

the resolution of the curve m = curve res[n]. Interpreting m as the number of rotations

through α the helix will make along its length, and L as the total height of the helix gives

L =
αpm

π

and with α = π
2
,

p =
2L

m

This provides all the required information to construct the points describing one half

spiral of the helix.

To construct the entire branch from this, firstly, the base spiral points are reoriented so

that the axis of the helix and the branch direction are collinear, then the helix is rotated

around this axis by a random angle to introduce some variation between branches. The
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Figure 3.4: Black Oak. Figure 3.5: Tree with helical trunk.

base helix points are then translated so that b0 is located at the start position of the

branch, and all other points retain their positions relative to b0. Looping for n iterations,

the rest of the branch is constructed by rotating the base helix points by π
2

around the

axis of the helix (i.e., the branch direction) with each iteration and translating them such

that the start point of the current segment is equal to the endpoint of the last.

The calculations to determine the characteristics of the helix are therefore only carried

out once, with the points then just being rotated and translated with each iteration,

making this quite an efficient method of constructing such branches. The radius of the

resulting Bézier curve is tapered using the standard method resulting in an effective

approximation to a spiralling branch. This method also enables the resolution of the

Bézier curve to be increased to allow for flaring and periodic tapering, as described above,

using the same method as non-helical, branches. Child branches can also be distributed

along the stem in the same manner as for ordinary branches.

This sort of branch is typically used for small twigs at the third or fourth level of

branching such as in the black oak (Figure 3.4). Though can also be used to model trees

which have been trained by humans for aesthetic effect, such as in Figure 3.5.

Tropism

Weber and Penn include an attraction up parameter which applies to branches in the

second and deeper levels of the tree. This affects their growth direction either upward

towards light, or downwards due to gravity. While this is a good approximation in many

cases, it ignores lateral effects on the tree—typically due to a prevailing wind. I therefore

make use of the more general tropism vector described above in §3.1.2, specified using the

tropism parameter.

As with the original attraction up parameter, the vertical component of the tropism

vector is only applied to secondary or deeper level branches as excessive effects on the

trunk and primary branches result in degraded appearance otherwise. Lateral tropism is

applied to all levels of the tree, these effects can be seen in Figure 3.6.
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Figure 3.6: Effect of tropism parameter on the silver birch.

No tropism, vertical tropism and vertical and lateral tropism.

Pruning

Pruning is introduced by Weber and Penn to control the shape of particularly unruly

trees for which the standard parameters alone cannot adequately describe their overall

shape [WP95, §4.6], one clear example is the weeping willow.

First a test pass is performed in which the basic branch geometry is generated but

not added to the final model, and with no recursive calls for child branches. If at all

points along its length the branch remains within the envelope then the branch is simply

added to the model, otherwise it is retested with a reduced total length. This process is

repeated until the branch is contained within the pruning envelope or it is less than 15% of

its original length, at which point the branch is discarded entirely. All random aspects of

the branch must be identical with each iteration for this method to be valid. Fortunately

Python’s random module provides the methods getstate and setstate which are used

to ensure that the pseudo random number generator starts with the same state for each

iteration and therefore produces valid pruning results.

Figure 3.7: Effect of the prune ratio parameter for values 0, 0.5 and 1.



3.2. PARAMETRIC APPROACH 35

Figure 3.8: Spherically, cylindrically and cubically pruned trees.

Figure 3.9: Tree pruned based on contextual objects.

The severity of pruning is controlled by the prune ratio parameter, as is visualised in

Figure 3.7. This is applied by finding the fitting length for the branch, then interpolating

between this and the original length according to the value of prune ratio.

The model presented for the pruning envelope is that of a solid of revolution around

the z-axis. This is generally very good for modelling the shapes of trees, though in some

cases we desire a more arbitrary shape. The above method simply requires a point test

to determine if the segmentation points of a branch are within the envelope. The point

test can, therefore, be arbitrarily defined to generate a wide variety of rotationally non-

uniform shapes, such as the cube shaped tree in Figure 3.8. This can be extended to

account for other objects in the environment which real trees would grow around, such as

buildings and walls. A basic example is given in Figure 3.9.
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Figure 3.10: Bamboo.

Multiple Trunks

In order to extend the parameterisation to allow for modelling of trees and plants with

multiple trunks from ground level, I added the floor splits parameter. An example usage

of this parameter is the bamboo in Figure 3.10.

The start point of each trunk is distributed within a circle of radius proportional to

the radius of each stem using Poisson disc sampling with a minimum separation distance

also proportional to the radius of each stem. The start orientation of the trunk is then

modified such that it faces outwards from the centre of the circle allowing branches to

curve primarily outwards, as seen in the bamboo. Each trunk is generated using the

standard procedure as if it were an isolated tree.

If we wished to automate generation of a large collection of trees, such as those in a

forest, then a similar method could be used, distributing trunks over a larger area. In this

case it would likely be beneficial to use a faster method of Poisson disc sampling such as

that proposed by Bridson [Bri07].

3.2.2 Leaves

Leaves are treated in a very similar way to branches, utilising the values of down angle[n],

down angle v[n], rotate[n] and rotate v[n] in exactly the same way. The number of

leaves on a branch is also calculated in a very similar manner to child branches, though

is instead based on leaf blos num. Leaves are added only to the final, deepest, level of

branches; so for a tree with levels = 3 the leaves would use the parameters for n = 4.

There are a number of predefined leaf shapes2, the shape used for a tree is chosen using

the parameter leaf shape and can be scaled in totality or just in the x-direction.

To construct the output leaf mesh, an array of leaf positions and orientations is main-

tained. This is populated as the branches are constructed recursively; when the final level

of recursion is reached the position and orientation of the leaf, determined as they would

be for child branches, are appended to the array rather than constructing a further level

2Ovate, linear, cordate, maple, palmate, spiky oak, rounded oak, elliptic, rectangle and triangle.



3.2. PARAMETRIC APPROACH 37

Figure 3.11: Apple. Figure 3.12: Hill Cherry.

of branching. Then once the branch construction is complete, this array of leaf locations

is iterated over and the base leaf polygons defined for the current leaf shape transformed

to the relevant location and orientation. The transformed polygons are then added to a

single mesh which will ultimately contain all leaves for the tree.

When the base polygon is transformed an additional re-orientation is also performed,

with its effect fractionally controlled by leaf bend. This rotates the leaf such that it

faces upwards and outwards to simulate the effect of sunlight on the growth pattern of

the tree [WP95, §4.9].

Blossom

One common element in the growth cycle of many trees, which Weber and Penn’s original

model ignores entirely, is blossom. Their model can very easily be expanded to accom-

modate this; I have introduced the blossom rate parameter to describe the percentage

of the total number of leaves and blossom on the tree which are blossom. The blos-

som shape and blossom scale parameters are also introduced to specify the geometry

of the blossom themselves, again using a set a predefined shapes3.

While iterating over the list of leaf positions as described above, a random choice is

made for each leaf (based on the value of blossom rate) as to whether it will be a leaf

or blossom. The rest of the procedure is identical except that the base polygon used is

for the selected blossom shape rather than the leaf, and is added to a separate blossom

mesh.

The results of this simple modification are quite effective, as can be seen in the apple

(Figure 3.11, blossom rate = 0.35) and hill cherry (Figure 3.12, blossom rate = 1).

3Cherry, orange and magnolia.
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3.3 Extensions

Given that the parameter list for my implementation of Weber and Penn’s method is

quite extensive and complex, I hoped to simplify the process of tree design in order

that artists could more easily utilise the system. I had two ideas as to how this may

be easily achieved. Firstly, reducing the number of input parameters required through

dimensionality reduction, and secondly, automated determination of parameters given a

goal in image form.

3.3.1 Dimensionality Reduction

To perform dimensionality reduction on the parameter list I opted to use the principle

component analysis (PCA, also known as KLT or the Hotelling transform) functionality

of scikit-learn. This uses singular value decomposition (SVD) to project the data to

a lower dimensional space. The aim being to map the standard parameter space down to

just a few meta-parameters which the artist can then easily control.

The most intuitive mapping would probably be to a two-dimensional space with labeled

points marking specific tree breeds. The artist can then choose a point to represent the

blend of trees they want to produce. Alternatively a number of specific meta-parameters

may be identified, though it is hard to devise a suitable number and map these to mean-

ingful behaviours via the full parameter list. The two-dimensional results are somewhat

successful, though there are a number of issues with the method as further explored in

§4.4.1.

3.3.2 Genetic Algorithm

To devise parameter lists automatically I chose to use a genetic algorithm. The algorithm

starts with a randomised parameter list and generates a population by copying this and

permuting a randomly selected parameter by a random amount proportional to its cur-

rent value. The permutation process also has a small chance of flipping the sign of the

parameter value to incorporate the negative flags used for some parameters, these values

would not be reached by gradual incrementation alone as the visual result going from

positive to negative is non-monotonic.

Blender ’s command line interface allows for the generation script to be executed and

a black and white render of the resulting model produced automatically. This is then

compared to the goal image using the misc.imread functionality of the scipy library

to obtain a simple pixel difference value between the images. This is used to rank the

members of the current generation by their fitness (inverse of pixel difference). This

is a fairly crude fitness function, but does provide meaningful results. The generation

and rendering of each member of the population are preformed in parallel using the

subprocess module.

The two fittest parameter lists from the current generation are taken and merged

together to form the basis of the next generation. Using the same permutation procedure

as above, a new population for this generation is generated and evaluated using the fitness
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function. This process is repeated for a very large number of generations, hopefully

resulting in a parameter list giving a very high fitness value.

Initially I chose to use an elitist approach where the current best parameter lists

were only taken if the error was an improvement on the previous generation, though I

found better results were achieved by always taking the current best, even if they were

worse than the last generation, so as to avoid getting stuck in local maxima. During the

execution of the genetic algorithm the seed from which the tree is generated was also

fixed so that the only change in output image between generations is due to the altered

parameter, and not random variation caused by changing the seed.

I decided to limit the goal imagery to black and white renders of trees generated using

my system with known parameters in order to simplify the implementation due to the

time constraints of the project. Though the principle could certainly be expanded to

higher information imagery or even evaluation of fitness of the model geometry directly

provided an adequate fitness function could be developed.

The results of the algorithm can be seen in §4.4.2.

3.4 Summary

As detailed above, I have completed a general purpose L-system implementation in

python, as well as a parser to translate the symbol lists generated by the iterated L-

systems into 3D models within the Blender application.

In addition, I have implemented a tool based on Weber and Penn’s parametric model

for tree generation within Blender and explored the effects of dimensionality reduction

on the parameter lists used as input for this system. Finally, I have developed a genetic

algorithm which attempts to automatically devise an input parameter list which results

in a tree similar to one pictured in a given 2D goal image.
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Chapter 4

Evaluation

There are three critical aspects of evaluation for the two tree generation systems which I

have developed. Most importantly is the visual result, this may be in 3D when used in

a game or film, or in 2D if rendered to a static image. Secondly is the performance of

the system; it must be reasonable for the system to be used as part of the conventional

work flow for someone producing content for the forms of media discussed. A sensible

benchmark is the time taken for an experienced artist to model a tree by hand, which

is in the order of minutes to hours1. Finally is the usability of the system; it must be

accessible to users who may have no, or limited knowledge of programming concepts but

are competent artists or content creators.

4.1 Visual Result

For evaluation of the visual results of the systems, I chose to limit my investigation to 2D

renders of the resulting trees (similar to those in Appendix A). The conclusions should

still be somewhat representative for 3D, and it is a great deal more difficult to accurately

assess the measures I wished to effectively in 3D—either a video of the tree model or some

interactive game-like environment would need to be produced.

In order to determine if my implementations are successful I decided to compare them

to an existing implementation of Weber and Penn’s model which, for the purposes of

evaluation, I assume to be a successful implementation. This existing system is a Java

app called Arbaro [Die15] which can generate .OBJ files which can be imported into

Blender and rendered using the exact same method as my own models. In order to asses

the relative quality of the rendered models from each system I chose to use a pairwise

comparison method similar to that described by Silverstein and Farrell [SF01], this was

achieved using Rafa l Mantiuk’s pwcmp library [Man17].

I therefore selected a number of models from each system which were then rendered

in an identical way; each survey consisted of a number of pairs of these renders. Each

pair used trees of the same type (aspen with aspen, willow with willow etc.) generated

using different systems. The range of different comparisons were distributed evenly across

1A small group of artists were surveyed, they estimated that to produce models of comparable quality

to the parametric tool would take between 30 minutes and 2 hours depending on the type of tree.

41
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Figure 4.1: Scores derived from survey of visual results for 3 different test designs.

Test 1 Test 2 Test 3

0.5

1

1.5

2

2.5

3

3.5

S
co

re

Arbaro Parametric L-Systems

three distinct survey designs, or tests. Participants had to select which of each pair they

deemed to be the most realistic. A group of fifteen participants were surveyed, each given

fifteen comparisons, the results were then tabulated and final scores calculated for each

system.

This method gives an average realism score across all tests of 1.313+0.600
−0.480 for the para-

metric system and 0.325+0.418
−0.339 for the L-system based tool, both relative to a baseline of 0

for Arbaro. This indicates that the parametric system performs better than Arbaro in a

significant way and is therefore a successful implementation. The L-systems tool, however,

does not outperform Arbaro significantly given the large relative negative uncertainty of

the score. It therefore only produces trees of comparable, not definitively higher, quality

to Arbaro; this is arguably still a useful implementation as it approximately equals the

currently available tool.

As visible in Figure 4.1, the above conclusions hold on a test by test basis. The

parametric tool outperforms Arbaro significantly for all tests, while the L-systems tool

outperforms Arbaro in Test 1, is not conclusively better or worse in Test 2, and is signifi-

cantly worse in Test 3. This demonstrates that the parametric system provides the best

visual results across a range of tree types spread across the different survey designs.

I do not have a sufficient number of samples to carry out the above analysis for each

individual tree type reliably, though looking at the raw comparison data (Figure 4.2) can

provide some insights. As expected we see that in the majority of cases my parametric

tool is preferred to Arbaro, with it chosen by all participants for the Lombardy poplar

and weeping willow. Though there are still cases where Arbaro does produce models of

greater realism, such as the black tupelo.
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Figure 4.2: Raw comparison data by tree type for parametric system against Arbaro.
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4.2 Performance

4.2.1 Data Collection

In order to gather data on the performance I included in both tools provision to output

times taken to complete various aspects of the generation process2, as well as various com-

plexity measures for the resulting models. I then created a short script that would enable

a large number of executions of the generation process to be performed automatically

with the results written to a file. Initially, I intended to run the entire timing process

within the Blender application. After some testing I noticed a systematic error present in

the results obtained; over time the generation times were increasing dramatically as can

be seen in Figure 4.3.

Figure 4.3: Timing data for generation of 1000 quaking aspen models using the

parametric system with two alternative timing mechanisms.
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After some research, it seems that this was due to Blender caching the geometry of the

resulting models, even if the model was deleted after each iteration, resulting in increasing

memory usage and slowdown. It is not possible to avoid this issue working entirely within

Blender, so I instead opted to run the timing script externally and invoke the generation

script via Blender ’s command line interface. The output of the process was then parsed

and relevant information extracted and written to file. This added some overhead to the

timing procedure itself as Blender had to be initialised for each execution, but eliminated

the systematic error as shown in Figure 4.3.

4.2.2 Generation Time

Both the parametric and L-system based approaches generate models in a time in the

order of seconds, with a maximum of around 400 seconds for weeping willow. All these

times are significantly shorter than it would take a skilled artist to create a model of

2Measured using 2013 MacBook Pro: 2.8 GHz Intel Core i7 - 16 GB 1600 MHz DDR3
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Figure 4.4: Generation time for 100 instances of 5 trees types generated using each

system.
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similar quality by hand. In this respect the performance of both systems is certainly

adequate to qualify as a successful implementation.

It is difficult to make any reasonable conclusions as to the relative speeds of the two

systems. In general the time taken to generate the same type of tree using both systems

is fairly similar, as shown in Figure 4.4. There does not seem to be any clear trend for

one system to be quicker than the other; in some cases such as the Lombardy poplar the

parametric system is faster, while in others such as the quaking aspen the L-system is

quicker.

The spread of speeds for the L-systems tool for each tree also seem to vary by a

much larger amount than the parametric tool. With the quaking aspen having a very

small spread, while the acer and pine have much higher spreads. The L-systems tool’s

performance seems to vary wildly, a result that makes sense given the arbitrary nature of

the input L-system grammars. The performance of the parametric tool, however, seems

to be a deal more predictable.

As shown in Figure 4.5A, branch generation time grows exponentially with branch

complexity3, bounded by O(n3) and Ω(n2) - the dashed line plotted on Figure 4.5A is

raised to a power of 2.7. The constant of proportionality, however, is extremely small

giving us reasonable performance, even for very complex trees such as the weeping willow

with a branch complexity of ∼ 160000.

Again, the results for the L-systems tool seem to vary drastically based on the tree

type that is being generated. As can be seen in Figure 4.6, the Acer seems to follow an

approximately O(n2) complexity, while the Lombardy poplar and small pine are clearly

linear in branch complexity. Others like the palm and quaking aspen are very tightly

clustered with no clear trend. This makes it very difficult to predict the performance

characteristics of the system in general given that it is largely dictated by the input

L-system grammar which is entirely arbitrary.

3The number of Bézier points in the tree, proportional to
∑

n branches[n] ∗ curve res[n]
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Figure 4.5: Timing results for two generation phases of parametric tool.
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Figure 4.6: Timing results for parsing phase of L-systems tool.
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Leaf generation time is O(n) in the number of leaves on the tree, controlled by

leaf blos num. The constant of proportionality is defined by the number of vertices

in the leaf and therefore controlled by leaf shape. For leaves with a high number of ver-

tices, such as the oak leaf, the constant is significantly higher as can be seen for the black

oak in Figure 4.5B. By contrast leaves with fewer vertices, such as pine leaves, result in a

much lower constant as seen for the Douglas and balsam firs. The leaf time characteristics

for both systems are near identical as the code is largely common between systems.

It is possible to drastically improve the speed of generation by exploiting parallelism.

Blender does not allow for multi-processing within the application, but as the output of

the system is just a series of Bézier points and polygons we could easily abstract away

from Blender. The libraries Blender provides can also be used outside of the application,

further facilitating this option. Issues may be introduced where determinism is required,

such as pruning, as multi-processing would potentially disrupt this. Limiting the level of

parallelism to ensure safety in these cases would certainly be feasible, and in cases where

pruning is not required there should be no issue.

4.2.3 Model Complexity

Another aspect of the performance of the system is the complexity of the resulting mod-

els. Ideally we want to produce the least complex model possible for a good visual result.

Again it is not clear that either the parametric or L-system based tool is best in this

respect from Figure 4.7. As before, the behaviour of the parametric system seems to be

more predictable, with variance roughly proportional to the magnitude of complexity. In

contrast to the the L-system which varies drastically; from complex models like the quak-

ing aspen with very low variance to models with a extremely large range of complexities
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Figure 4.7: Branch complexity for 100 instances of 5 trees types generated using each

system.
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like the acer.

It is unlikely that either automated system outperforms a skilled human artist in

producing visually pleasing models of minimal complexity. A human can optimise specific

aspects of the model based on how they perceive it in order to eliminate unnecessary

vertices, a task which a computer will struggle greatly to emulate. However, given the

much quicker generation process this tradeoff may be acceptable; a human can always

manually optimise the generated model post construction. Making use of the Bézier

curve functionality in Blender also allows for dynamic alteration of the resolution of the

resulting polygon mesh after the model has been generated.

4.3 Usability

Usability is also a key aspect of each system. The parametric system has a large number

of input parameters, but they are quite intuitive and one can quite easily visualise the

effect of changing a numeric parameter on the geometry of the model. With a small

amount of use the design process can become fairly quick; I have found that at the end

of the project I can effectively design a new tree type in just a few minutes. By designing

each level distinctly, starting with the trunk, and generating only up to the level being

designed we can also obtain rapid visual feedback for parameter changes.

Currently the input must be defined as text, but it is feasible to develop a user interface

for this system with sliders and selection boxes to further simplify the design process for

artists. Other methods of simplifying the design process are also explored in §4.4.

L-system design is a great deal more difficult; it is very challenging to visualise the

output geometry of a given system. We first have to determine the result of iterating the

production rules and then how this will be geometrically interpreted. As a result, devel-

oping grammars for new tree types can take far longer than designing for the parametric

tool. There is also the issue that the grammar must be specified directly in Python, re-
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quiring some programming knowledge from the user. This is not feasible given that the

intended users are primarily artists and content creators, not programmers. Alternatively

a parsing system to translate formal definitions (as used in §2.3.1) to Python could be

developed, though this would further slow the generation process down and still require

the theoretical knowledge to design a formally defined L-system.

There is some consideration necessary as to the expressivity of each system. The

parametric system is comprehensive enough to represent a huge variety of tree types, as

can be seen in Appendix A.1, though is still limited to the fixed parameters provided. The

L-system approach, by contrast, can represent entirely arbitrary structures. It would even

be possible to entirely encapsulate the parametric system within an L-system grammar,

though this would be a great deal less efficient. While this enhanced expressivity can be

useful, there is little need for it given the quite restricted use cases of the tool, particularly

with the associated sacrifice in general usability.

4.4 Extensions

4.4.1 Dimensionality Reduction

The process described in §3.3.1 proved somewhat successful at producing appropriate

output parameters when mapping down to two dimensions, though had some clear short-

comings. Mapping to a number of dimensions greater than two proved difficult as the

resulting dimensions could not be assigned any logical interpretation which an artist could

use to visualise the resulting tree.

As Figure 4.8 demonstrates, we can quite successfully generate parameter lists which

merge the appearance of two other trees by extracting the output parameters for a coor-

dinate half way between these two trees in the lower dimensional space. The number of

input trees parameters from which the data is being fit (fifteen) is perhaps not sufficient

to provide full enough coverage for this to be a useful tool at present, though does serve

as a proof of concept that the principle of dimensionality reduction may result in a useful

simplification of the parameter selection process.

Figure 4.8: Merging (centre) of quaking aspen (left) and silver birch (right) produced

using dimensionality reduction.
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The key issue with this method is the non-monotonicity of parameters, particularly

those using negative flags to specify unusual behaviour, meaning we do not have a di-

rect mapping between parameter value and visual perception. For any parameters (e.g.,

length[n], leaf blos num) for which this is not the case, and the reduction works very

well. But if we take a merging of, for example, the palm tree and another tree then the

taper of the branch will likely appear incorrect due to the non-uniform way in which the

taper parameter is defined.

4.4.2 Genetic Algorithm

Similarly, the genetic algorithm described in §3.3.2 has provided some fairly successful

results, although in a quite restricted domain—certainly it can be considered as a proof

of concept. Over the course of a few hours runtime a fitness of around 95-97% based on

a measure of pixel accuracy was obtained, see Figure 4.9. Perceptually the result is not

quite as impressive as these fitness values suggest, but is somewhat successful nonetheless,

as shown in Figure 4.10.

Some aspects of the trees are matched quite accurately; the trunk of the quaking

aspen is almost exact and the overall shapes of the trees, primarily a result of branch

length parameters, are very accurate. Leaves seem to pose a particular problem due to

the high fidelity required in assessing their fitness. This is a very restricted application of

the genetic algorithm, working only in two dimensions and two colours, but these results

demonstrate that the concept is certainly a promising one. The runtime is also an issue,

though optimisation is certainly possible, a major issue here was the necessity to render

the output for every member of every generation which would be unnecessary if the fitness

was evaluated using the geometry of the model directly.

Stava et al. demonstrate a similar technique making use of Monte Carlo Markov

Chains to determine the optimal set of parameters [Sta+14]. They use LiDAR scanning

to capture real trees which are used as goals, with fitness evaluated based on the 3D

structure of the tree. Their approach generates quite realistic results, given sufficient

input data, in times typically under an hour.

Figure 4.9: Progress of genetic algorithm in devising parameters for two goal tree types.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

Time (hours)

E
rr

or
%

Lombardy Poplar
Quaking Aspen



4.4. EXTENSIONS 51

Figure 4.10: Start, goal and output models of genetic algorithm.

Render of tree made using start parameters of genetic algorithm.

Quaking aspen goal image. Output of genetic algorithm.

Lombardy poplar goal image. Output of genetic algorithm.
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4.5 Summary

From the above we observe that, in terms of visual quality, the parametric system outper-

forms Arbaro in almost all cases and perform significantly better than L-systems based

tool in most cases. The performance of the parametric tool is also more reliable than

that of the L-systems tool, as is the complexity of the models it produces. Finally, the

parametric tool offers significant scope for improvement in terms of usability; a proof-of-

concept result was obtained for automatic parameter list design using a genetic algorithm,

and PCA provided some interesting results in regard to dimensionality reduction.



Chapter 5

Conclusion

5.1 Summary

In this project I have fulfilled all success criteria. I have implemented tree model genera-

tion systems using two alternative approaches and devised a set of input parameter lists

and L-system definitions to generate a wide variety of trees (see Appendix A). I have also

explored both my extension goals. I demonstrated a moderately successful application

of dimensionality reduction to the input used by the parametric system. I also imple-

mented a genetic algorithm to automatically devise parameter lists given a goal image

which showed significant promise.

The parametric system was the more successful of the two. Generation times were

faster than an artist, realism better than existing alternatives and usability was good,

with the potential to be improved via my extensions or the implementation of a full user

interface. The L-system based tool was also successful, with similar generation times and

visual results comparable to existing alternatives, though the poor usability of the system

let it down as a viable tool for artists.

I have enjoyed the project greatly and learned a great deal in its completion; learning

Python as part of the project has been good fun and will likely prove very useful in the

future. Interpreting and translating research papers was also an interesting challenge

and something which I had no previous experience. The project has also given me an

experience of academic writing and what it might be like to continue within academia

and to do independent research, this is very valuable at a time where I have a choice to

pursue further study or go into industry.

If starting the project again, I would like to shift focus from the L-systems approach,

which is fundamentally limited by its lack of usability, to better the explore space coloni-

sation and modular approaches outlined in §1.2. I think that these have greater scope for

development than L-systems, in particular a hybrid of these systems incorporating some

aspects of Weber and Penn’s model might produce the best possible results.
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5.2 Future Work

Going forward I would like to further develop the parametric system. Implementation of

a user interface within the Blender plugin would enable content creators to use the plugin

in real world projects. I would like to complete this in the near future and release the

finished plugin for free use by the Blender community.

There are also potential extensions to the generation system itself. In their paper

Weber and Penn also outline a methodology for animation of the tree structure to replicate

the effects of wind, this could be implemented using Blender ’s armature features and

would greatly improve the visual results for animated content. An improvement of larger

scope would be to implement my own application to perform the modelling of the branch

structure from the generated Bézier points to enable further improvements in realism such

as non-uniform branch cross sections.
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Appendix A

Renders of Resulting Tree Models

(Tree renders not to scale)

A.1 Parametric

Figure A.1: Quaking Aspen

(autumn)

Figure A.2: Quaking Aspen

(winter)

Figure A.3: Weeping Willow

(summer)

Figure A.4: Weeping Willow

(winter)
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Figure A.5: Bamboo Figure A.6: Palm

Figure A.7: Lombardy Poplar

(summer)

Figure A.8: Lombardy Poplar

(winter)

Figure A.9: Small Pine Figure A.10: Acer
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Figure A.11: Silver Birch Figure A.12: Douglas Fir

Figure A.13: Apple

(summer)

Figure A.14: Apple

(spring)

Figure A.15: Black Tupelo

(autumn)

Figure A.16: Black Tupelo

(winter)
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Figure A.17: Black Oak

(summer)

Figure A.18: Black Oak

(winter)

Figure A.19: European Larch
Figure A.20: Hill Cherry

(spring)

Figure A.21: Balsam Fir
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A.2 L-Systems

Figure A.22: Quaking Aspen

(autumn)

Figure A.23: Quaking Aspen

(winter)

Figure A.24: Lombardy Poplar

(summer)

Figure A.25: Lombardy Poplar

(winter)

Figure A.26: Small Pine Figure A.27: Acer
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Figure A.28: Palm



Appendix B

L-System Grammars

B.1 Palm

Used for Figure A.28.

1 __d_t__ = 4

2 __t_max__ = 350

3 __p_max__ = 0.93

4

5 def q_prod(sym):

6 """ Production rule for Q"""

7 prop_off = sym.parameters["t"] / __t_max__

8 if prop_off < 1:

9 res = [LSymbol("!", {"w": 0.85 + 0.15 * sin(sym.parameters["t"])}),

10 LSymbol("^", {"a": random () - 0.65})]

11 if prop_off > __p_max__:

12 d_ang = 1 / (1 - __p_max__) * (1 - prop_off) * 110 + 15

13 res.extend ([ LSymbol("!", {"w": 0.1})])

14 for ind in range(int(random () * 2 + 5)):

15 r_ang = sym.parameters["t"] * 10 + ind * (random () * 50 + 40)

16 e_d_ang = d_ang * (random () * 0.4 + 0.8)

17 res.extend ([ LSymbol("/", {"a": r_ang }),

18 LSymbol("&", {"a": e_d_ang }),

19 LSymbol("["),

20 LSymbol("A"),

21 LSymbol("]"),

22 LSymbol("^", {"a": e_d_ang }),

23 LSymbol("\\", {"a": r_ang })],)

24 res.append(LSymbol("F", {"l": 0.05}))

25 else:

26 res.append(LSymbol("F", {"l": 0.15}))

27 res.append(LSymbol("Q", {"t": sym.parameters["t"] + __d_t__ }))

28 else:

29 res = [LSymbol("!", {"w": 0}),

30 LSymbol("F", {"l": 0.15})]

31 return res

32

33 def a_prod(_):

34 """ Production rule for A"""

35 res = []

36 num = int(random () * 5 + 30)

37 for ind in range(num):

38 d_ang = (num - 1 - ind) * (80 / num)

39 res.extend ([ LSymbol("!", {"w": 0.1 - ind * 0.1 / 15}),

40 LSymbol("F", {"l": 0.1}) ,

41 LSymbol("L", {"r_ang": 50 * (random () * 0.4 + 0.8),

42 "d_ang": d_ang * (random () * 0.4 + 0.8)}),

43 LSymbol("L", {"r_ang": -50 * (random () * 0.4 + 0.8),
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44 "d_ang": d_ang * (random () * 0.4 + 0.8)}),

45 LSymbol("&", {"a": 1})])

46 return res

47

48 def system ():

49 """ initialize and iterate the system as appropriate """

50 l_sys = LSystem(axiom=[ LSymbol("!", {"w": 0.2}) ,

51 LSymbol("/", {"a": random () * 360}) ,

52 LSymbol("Q", {"t": 0})],

53 rules={"Q": q_prod , "A": a_prod},

54 tropism=Vector ([0, 0, -1]),

55 thickness =0.2,

56 bendiness=0,

57 leaf_shape =10,

58 leaf_scale =1,

59 leaf_scale_x =0.1,

60 leaf_bend =0)

61 l_sys.iterate_n (100)

62 return l_sys

B.2 Lombardy Poplar

Used for Figures A.24 and A.25.

1 __iterations__ = 10.0

2 __base_width__ = 0.7

3

4 def q_prod(sym):

5 """ Production rule for Q"""

6 ret = []

7 prev_ang = 0

8 for _ in range(int(random () * 2 + 3)):

9 ang = random () * 10 + 30

10 ret.extend ([ LSymbol("/", {"a": prev_ang + 75 + random () * 10}),

11 LSymbol("&", {"a": ang}),

12 LSymbol("!", {"w": sym.parameters["w"] * 0.2}),

13 LSymbol("["),

14 LSymbol("A", {"w": sym.parameters["w"] * 0.3,

15 "l": 1.5 * sqrt(sym.parameters["w"]) * (random () * 0.2

+ 0.9)}),

16 LSymbol("]"),

17 LSymbol("!", {"w": sym.parameters["w"]}),

18 LSymbol("^", {"a": ang}),

19 LSymbol("F", {"l": sym.parameters["l"]})])

20 ret.append(LSymbol("Q", {"w": max(0, sym.parameters["w"] - __base_width__ / 14),

21 "l": sym.parameters["l"]}))

22 return ret

23

24 def a_prod(sym):

25 """ Production rule for A"""

26 ret = []

27 n = int(random () * 5 + 22.5)

28 w_d = sym.parameters["w"] / (n - 1)

29 prev_rot = 0

30 for ind in range(n):

31 wid = sym.parameters["w"] - ind * w_d

32 ang = random () * 10 + 25

33 ret.extend ([ LSymbol("!", {"w": wid}),

34 LSymbol("F", {"l": sym.parameters["l"] / 3}),

35 LSymbol("/", {"a": prev_rot + 140}) ,

36 LSymbol("&", {"a": ang}),

37 LSymbol("!", {"w": wid * 0.3}),

38 LSymbol("["),

39 LSymbol("F", {"l": 0.75 * sqrt(n - ind) * sym.parameters["l"] / 3,



B.3. QUAKING ASPEN 67

40 "leaves": 25,

41 "leaf_d_ang": 40,

42 "leaf_r_ang": 140}),

43 LSymbol("^", {"a": 20}),

44 LSymbol("F", {"l": 0.75 * sqrt(n - ind) * sym.parameters["l"] / 3,

45 "leaves": 25,

46 "leaf_d_ang": 40,

47 "leaf_r_ang": 140}),

48 LSymbol("%"),

49 LSymbol("]"),

50 LSymbol("!", {"w": wid}),

51 LSymbol("^", {"a": ang}),

52 LSymbol("\\", {"a": prev_rot + 140}) ,

53 LSymbol("^", {"a": 1.2}) ])

54 prev_rot += 140

55 return ret

56

57 def system ():

58 """ initialize and iterate the system as appropriate """

59 l_sys = LSystem(axiom=[ LSymbol("!", {"w": __base_width__ }),

60 LSymbol("/", {"a": 45}),

61 LSymbol("Q", {"w": __base_width__ , "l": 0.5})],

62 rules={"Q": q_prod , "A": a_prod},

63 tropism=Vector ([0, 0, 0]),

64 thickness =0.5,

65 bendiness=0,

66 leaf_shape =0,

67 leaf_scale =0.3,

68 leaf_bend =0.7)

69 l_sys.iterate_n (15)

70 return l_sys

B.3 Quaking Aspen

Used for Figures A.22 and A.23.

1 __base_width__ = 0.3

2 __base_length__ = 4

3

4 def q_prod(sym):

5 """ Production rule for Q"""

6 ret = []

7 prev_ang = 0

8 n = int(random () * 2 + 7)

9 for ind in range (8):

10 offset = 1 - (__base_width__ - sym.parameters["w"]) / __base_width__

11 offset += ind / 8 / 12

12 dang = 30 + 85 * offset

13 if offset <= 0.7:

14 b_len = 0.4 + 0.6 * offset / 0.7

15 else:

16 b_len = 0.4 + 0.6 * (1.0 - offset) / 0.3

17 ret.extend ([ LSymbol("/", {"a": prev_ang + 75 + random () * 10}),

18 LSymbol("&", {"a": dang}),

19 LSymbol("!", {"w": sym.parameters["w"] * 0.08 * b_len}),

20 LSymbol("["),

21 LSymbol("F", {"l": sym.parameters["w"] / 2}),

22 LSymbol("A", {"w": 0.08 * b_len ,

23 "l": 0.6 * b_len}),

24 LSymbol("]"),

25 LSymbol("!", {"w": sym.parameters["w"]}),

26 LSymbol("^", {"a": dang}),

27 LSymbol("F", {"l": sym.parameters["l"]})])

28 ret.append(LSymbol("Q", {"w": max(0, sym.parameters["w"] - __base_width__ / 11),
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29 "l": sym.parameters["l"]}))

30 return ret

31

32 def a_prod(sym):

33 """ Production rule for A"""

34 ret = []

35 w_d = sym.parameters["w"] / 14

36 prev_rot = 0

37 n = int(random () * 3 + 15.5)

38 for ind in range(n):

39 wid = sym.parameters["w"] - ind * w_d

40 l_count = int((sqrt(n - ind) + 2) * 4 * sym.parameters["l"])

41 ret.extend ([ LSymbol("!", {"w": wid}),

42 LSymbol("F", {"l": sym.parameters["l"] / 3}),

43 LSymbol("/", {"a": prev_rot + 140}) ,

44 LSymbol("&", {"a": 60}),

45 LSymbol("!", {"w": wid * 0.4}) ,

46 LSymbol("["),

47 LSymbol("F", {"l": sqrt(n - ind) * sym.parameters["l"] / 3,

48 "leaves": l_count ,

49 "leaf_d_ang": 40,

50 "leaf_r_ang": 140}),

51 LSymbol("^", {"a": random () * 30 + 30}),

52 LSymbol("F", {"l": sqrt(n - ind) * sym.parameters["l"] / 4,

53 "leaves": l_count ,

54 "leaf_d_ang": 40,

55 "leaf_r_ang": 140}),

56 LSymbol("%"),

57 LSymbol("]"),

58 LSymbol("!", {"w": wid}),

59 LSymbol("^", {"a": 60}),

60 LSymbol("\\", {"a": prev_rot + 140}) ,

61 LSymbol("+", {"a": -5 + random () * 10}),

62 LSymbol("^", {"a": -7.5 + random () * 15})])

63 prev_rot += 140

64 ret.append(LSymbol("F", {"l": sym.parameters["l"] / 2}))

65 return ret

66

67 def system ():

68 """ initialize and iterate the system as appropriate """

69 axiom = []

70 con = int(__base_length__ / 0.1)

71 s = random () * 0.2 + 0.9

72 for ind in range(con):

73 axiom.append(LSymbol("!", {"w": s * (__base_width__ + ((con - ind) / con) ** 6 *

0.2)}))

74 axiom.append(LSymbol("F", {"l": s * 0.1}))

75 axiom.append(LSymbol("Q", {"w": s * __base_width__ , "l": s * 0.1}))

76 l_sys = LSystem(axiom=axiom ,

77 rules={"Q": q_prod , "A": a_prod},

78 tropism=Vector ([0, 0, 0.2]),

79 thickness =0.5,

80 bendiness=0,

81 leaf_shape =3,

82 leaf_scale =0.17,

83 leaf_bend =0.2)

84 l_sys.iterate_n (12)

85 return l_sys
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Parameter Definitions

There follows a complete list of parameters for the system, with valid values and brief

descriptions. [n] after a parameter name indicates that it has a distinct value at each

level of branching.

shape

Integer 0–8, controls shape of the tree by altering

the first level branch length. Predefined options

conical, spherical, hemispherical, cylindrical, ta-

pered cylindrical, flame, inverse conical, tend flame

and custom respectively. Custom uses the envelope

defined by the prune * parameters to control the

tree shape directly rather than through pruning.

g scale

Float > 0, scale of the entire tree.

g scale v

Float, maximum variation in g scale.

levels

Integer > 0, number of levels of branching, typically

3 or 4.

ratio

Float > 0, ratio of the stem length to radius.

ratio power

Float, how drastically the branch radius is reduced

between levels.

flare

Float, by how much the radius of the base of the

trunk increases.

floor splits

Integer ≥ 0, number of stems of the tree coming

from the floor. See bamboo, Figure A.5.

base splits

Integer, number of splits at base height on trunk, if

negative then the number of splits will be randomly

chosen up to a maximum of |base splits|.

base size[n]

Float ≥ 0, proportion of branch on which no child

branches/leaves are spawned.

down angle[n]

Float, controls the angle of the direction of a child

branch (at level n) away from that of its parent (at

level n− 1).

down angle v[n]

Float, maximum variation in down angle

down angle[n], if < 0 then the value of

down angle v[n] is distributed along the parent

stem.

rotate[n]

Float, angle about the parent branch (at level n−1)

between each child branch. If < 0 then child

branches are directed rotate[n] degrees away from

the downward direction in their parent local basis.

For fanned branches, the fan will spread a total

69



70 APPENDIX C. PARAMETER DEFINITIONS

angle of rotate[n] and for whorled branches, each

whorl will rotate by rotate[n].

rotate v[n]

Float, maximum variation in rotate[n]. For fanned

and whorled branches, each branch will vary in an-

gle by rotate v[n].

branches[n]

Integer > 0, the maximum number of child branches

at level n on each parent stem.

length[n]

Float > 0, the length of branches at level n as a

fraction of their parent branch’s length.

length v[n]

Float, maximum variation in length[n].

taper[n]

Float 0–3, controls the tapering of the radius of each

branch along its length. If < 1 then the branch ta-

pers to taper[n] of its base radius at its end, so a

value 1 results in conical tapering. At taper[n] = 2

the radius remains uniform until the end of the stem

where the branch is rounded off in a hemisphere,

fractional values between 1 and 2 interpolate be-

tween conical tapering and this rounded end. Val-

ues > 2 result in periodic tapering with a maximum

variation in radius equal to (taper[n] − 2) of the

base radius - so a value of 3 results in a series of

adjacent spheres.

seg splits[n]

Float 0–2, maximum number of dichotomous

branches at each segment of a branch, fractional val-

ues are distributed along the stem using a method

similar to Floyd-Steinberg error diffusion.

split angle[n]

Float, angle between dichotomous branches.

split angle v[n]

Float, maximum variation in split angle[n].

curve res[n]

Integer > 0, number of segments in each branch.

curve[n]

Float, angle by which the direction of the stem will

change from start to end, rotating about the stem’s

local x-axis.

curve v[n]

Float, maximum variation in curve[n]. Applied

randomly at each segment.

curve back[n]

Float, angle in the opposite direction to curve[n]

that the stem will curve back from half way along,

creating S shaped branches.

bend v[n]

Float, maximum angle by which the direction of the

stem may change from start to end, rotating about

the stem’s local y-axis. Applied randomly at each

segment.

branch dist[n]

Float ≥ 0, controls the distribution of branches

along their parent stem. 0 indicates fully alternate

branching, interpolating to fully opposite branch-

ing at 1. Values > 1 indicate whorled branching

with n + 1 branches in each whorl. Fractional val-

ues result in a rounded integer number of branches

in each whorl, with the difference propagated using

a method similar to Floyd-Steinberg error diffusion.

radius mod[n]

Float ≥ 0, modifies the base radius of branches,

only for use in special cases such as the weeping wil-

low (Figure A.4) where the standard radius model

is not sufficient.

leaf blos num

Integer ≥ 0, number of leaves or blossom on each of

the deepest level of branches.
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leaf shape

Integer 1–10, predefined leaf shapes corresponding

to ovate, linear, cordate, maple, palmate, spiky oak,

rounded oak, elliptic, rectangle and triangle respec-

tively.

leaf scale

Float > 0, scale of leaves

leaf scale x

Float > 0, x direction scale of leaves.

leaf bend

Float 0–1, fractional amount by which leaves are re-

oriented to face the light (upwards and outwards).

blossom shape

Integer 1–3, predefined blossom shapes correspond-

ing to cherry, orange and magnolia respectively.

blossom scale

Float > 0, scale of blossom.

blossom rate

Float 0–1, fractional rate at which blossom occur

relative to leaves.

tropism

Float Vector 3D, influence upon the growth direc-

tion of the tree in the x, y and z directions, the z

element only applies to branches in the second level

and above (n ≥ 2).

prune ratio

Float 0–1, fractional amount by which the effect of

pruning is applied.

prune width

Float > 0, width of the pruning envelope as a frac-

tion of its height (the maximum height of the tree).

prune width peak

Float ≥ 0, the fractional distance from the bottom

of the pruning up at which the peak width occurs.

prune power low

Float, the curvature of the lower section of the prun-

ing envelope. < 1 results in a convex shape, > 1 in

concave.

prune power high

Float, the curvature of the upper section of the

pruning envelope. < 1 results in a convex shape,

> 1 in concave.
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Appendix D

Project Proposal

Computer Science Tripos – Part II – Project Proposal

Procedural generation of tree models for use in com-
puter graphics

Charlie Hewitt, Trinity Hall

20 October 2016

Project Supervisor: György Dénes

Director of Studies: Prof S. Moore

Project Overseers: Dr S. B. Holden & Dr S. H. Teufel

Introduction

Computer graphics is becoming increasingly prominent within the entertainment industry,

and so there are increasing demands to provide effective ways of producing visual assets

which can be used in films and games created using CGI. The field of algorithmic botany

is well established, with Lindenmayer’s definitive book on the subject The Algorithmic

Beauty of Plants first published in 1990 [PL90]. In addition to Lindenmayer’s fractal based

methodology, a parametric approach to tree generation is also possible, as described by

Weber and Penn [WP95] in 1995.

In this project I intend to build on the principle set out by Lindenmayer in order to pro-

cedurally generate realistic 3D models of trees, incorporating modern graphics techniques

to enhance the output of conventional Lindenmayer systems (L-systems). In addition to

this more conventional approach, I hope to develop a similar tool using Weber and Penn’s

parametric approach. This will enable me to compare and contrast these two approaches

and assess the merit of each.
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Starting point

There is a reasonable volume of existing literature in the field of procedural vegetation

modelling, with extensive work from the Department of Algorithmic Botany at the Uni-

versity of Calgary [Cal], stemming from Lindenmayer’s 1990 paper [PL90]. Mostly these

focus on the development of L-system based approaches, though others have proposed

entirely different methods such as the parametric system of Weber and Penn [WP95],

with similar work from Nystad [Nys10] and Skjermo [Skj09].

There are a number of existing tree generation plugins for Blender which may provide

useful reference and opportunity for comparison, these include SaplingTree [Hal] and

VegGen [Trv]. There also exist some less directly related applications such as TreeSketch

[Lon+12] and SpeedTree [Inc].

I hope to utilise Blender’s python scripting functionality to create the model genera-

tion tools. This provides access to a suite of standard modelling tools, enabling simple

generation of polygon meshes and Bézier/NURBS curves [Foua] as well as a UI framework

which can be used to control parameters used by the program.

I will not tackle rendering as part of this project, this will be performed entirely

using Blender’s built in Cycles rendering engine [Fouc]. This should enable me to quickly

generate high quality renders of the models produced which can then be used for visual

evaluation.

Resources required

For this project I shall mainly use my own dual-core computer running MacOS Sierra. I

accept full responsibility for this machine and I have made contingency plans to protect

myself against hardware and/or software failure. All code will be backed up to a github

repository as well as to an external HDD on a regular basis. Project files will also be

hosted in Google Drive which provides a further backup as well as version control.

I will be using the open source software package Blender for modelling and rendering

[Foua].

Work to be done

The project breaks down into the following sections:

• Understanding and creating a number of applicable L-systems which generate struc-

tures resembling a variety of tree types. These basic L-system will need to be trans-

formed into a 3D model, most likely through the use of a ’turtle’ controlled by

special symbols in the L-system grammar. Initially the tree structure will simply

be generated as a series of cylinders.

• Extension of system to use Bézier or NURBS curves to model branches rather than

basic shapes. Effort will need to be taken to ensure continuity at branching points,

stochastic methods will also be utilised to introduce an element of randomness to

the generation process.
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• Understanding and creating a parametric generation system similar to that outlined

by Weber and Penn [WP95]. This system will likely take a more direct approach to

geometry creation rather than using a turtle, and again will incorporate an element

of randomness.

• Creation of a series of test models and subsequent comparison of the generation

times, model complexity and visual results of the two systems. Additional per-

formance comparisons can be made by varying L-systems and parameters to each

system, for example the rate at which generation time increases relative to the num-

ber of iterations of the L-system. Visual results will be assessed through a survey

based on rendered images of the test models.

Success citeria

• Develop working tree generation system based on the L-systems approach.

• Develop working tree generation system based on a purely parametric approach.

• Generate a series of test models which can be used for performance comparisons of

the two systems

Possible extensions

• Improve rendering quality using textures including normal/bump mapping and pos-

sibly displacement mapping.

• Leaves and roots are somewhat neglected in the above outline, some effort could be

put towards an improved generation system for these aspects of the tree.

• There will likely be a number of user inputs to control the parameters of the gen-

eration, some work may be undertaken to streamline these inputs and create the

optimal control arrangement for artists to design trees, balancing controllability

with usability.

Timetable

Planned starting date is 21/10/2016.

• Michaelmas weeks 3–4

Research L-systems and other prior work in the area to gain a full understanding

of the theory underpinning the project. Familiarise myself with Blender’s python

scripting functionality.

• Michaelmas weeks 5–6

Implementation of basic L-system generator in python and basic translation to 3D

models to assess visual output of L-systems.
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• Michaelmas weeks 7–8

Extension of L-system generator to incorporate parametric and stochastic elements,

extend modelling system to reflect this.

• Michaelmas vacation

Implementation of parametric generation system. Create series of L-system gram-

mars and parametric configurations to use as a test set.

• Lent weeks 0–2

Write progress report. Refine generation systems, potential to work on some exten-

sions.

• Lent weeks 3–5

Start measurement of key metrics using the test set.

• Lent weeks 6–8

Final refinements and measurements to system and start main dissertation write

up, begin to consider evaluation.

• Easter vacation:

Finish main dissertation write up and continue work on evaluation.

• Easter term 0–2:

Finalise evaluation and complete dissertation.

• Easter term 3:

Proof reading and then an early submission so as to concentrate on examination

revision.
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