Head pose estimation and facial
landmark localisation for animals

Charles Hewitt
Trinity Hall

.7 UNIVERSITY OF
¥ CAMBRIDGE

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for Part III of
the Computer Science Tripos

University of Cambridge
Computer Laboratory
William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
UNITED KINGDOM

Email: cth40@cam.ac.uk
Supervisor: Dr Marwa Mahmoud

May 31, 2018






Declaration

[, Charles Hewitt of Trinity Hall, being a candidate for Computer Science
Tripos, Part III, hereby declare that this report and the work described in it
are my own work, unaided except as may be specified below, and that the re-
port does not contain material that has already been used to any substantial

extent for a comparable purpose.

Signed:

Date:

This dissertation is copyright (©) 2018 Charles Hewitt.

All trademarks used in this dissertation are hereby acknowledged.






Head pose estimation and facial landmark localisation
for animals

Abstract

This project investigates head pose estimation, facial landmark localisation
and the deployment of these techniques for animals, specifically sheep. A
new dataset of 850 sheep facial images, annotated with a 25 facial landmark
scheme and occlusion information, is introduced: the Sheep Facial Land-
marks in the Wild (SFLW) dataset. This provides a benchmark dataset
for evaluation of animal facial landmark localisation techniques and includes
a challenging range of images exhibiting large variations in head-pose and
occlusion.

A novel data augmentation technique using thin-plate-spline warping is pro-
posed to enhance the effectiveness of training on the SFLW dataset, along
with the use of negatively correlated augmentation, similar to that proposed
in [55], to boost representation of extreme head poses. These techniques are
shown to be effective in improving performance for head pose estimation and
facial landmark localisation.

An existing model for human head pose estimation from image data, without
facial landmark locations, using a CNN is adapted for use on sheep. A pre-
trained model is fine-tuned on the SFLW dataset with a resulting average
absolute error for yaw, pitch and roll under 7 degrees. Correlation with
ground truth pose information is also impressive, up to 0.91 for yaw.

A number of existing state-of-the-art methods used for human facial land-
mark localisation are evaluated on sheep using the SFLW dataset, the best
achieving a success rate of 90% and a mean normalised error of 0.05. Analysis
of the results of the highest performing technique motivates the introduction
of a pose-informed localisation technique, incorporating the newly developed,
landmark-free head pose estimation network.

This pose-informed localisation technique achieves a higher performance than
the best existing method on the SFLW dataset; with 93% success rate and a
mean normalised error of 0.045. Most significantly, error is markedly reduced
for images with extreme head poses.

Finally, a near real-time demonstration of a full pipeline, incorporating au-
tomated face detection and pose-informed face alignment, is carried out for
a number of pre-recorded videos. This serves as a proof-of-concept that
a production system incorporating these technologies for automated health
monitoring of livestock is eminently feasible.
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Chapter 1

Introduction

1.1 Motivation

In recent years automation has become widespread in many industries. This
has been facilitated by numerous technical advances in computer systems, as
well as the significant reduction in the cost of deploying such systems. Agri-
culture is an industry where mechanisation has had a huge historical impact

but is only just beginning to see the effects of computer-aided automation.

Global positioning system related technologies are some of the most estab-
lished within agriculture [36]. GPS enables highly detailed monitoring of
crops for assessment of yield, as well as targeted chemical application. Au-
tomated navigation by GPS has also become increasingly popular in recent

years.

Most agricultural computer vision (CV) research to date has focussed on
arable farming, with CV applied to asses quality of various fruits and veg-
etables, such as tomatoes [3], potatoes [59], as well as other quality control use
cases [45, 50]. Some work has also been carried out aimed at pastoral farm-
ing, where CV has been used for feed and waste management systems [23].
An application making use of artificial intelligence to help dairy farmers has

also recently been released [13], though instead uses accelerometer and GPS



Sensors.

The focus of this project is also related to pastoral farming, with the aim of
contributing towards automated pain recognition in livestock. Work in this
area has shown that pain in sheep can be reliably predicted from a number
of facial action units [33]. A key component of this process is the localisation
of a number of landmarks—for example, the eyes, ears or nose—on the face

of the sheep in order to identify these action units.

Facial landmark localisation is a well-explored problem in humans [38], but
existing work tackling this problem for sheep [55] and horses [40] only consid-
ers very sparse landmarks and relatively minimal head pose variation, as well
as achieving less than ideal accuracy. Denser landmarks would allow for more
accurate action unit detection and increased head pose variation in training

data would improve the resilience of models when deployed in-the-wild.

The primary aim of this work, then, is to investigate the problem of landmark
localisation (also known as face alignment) for animals, primarily sheep. The
end-goal being to demonstrate the feasibility of an automated system which
can be used to detect medical issues that require further investigation as
early as possible, rather than relying on infrequent veterinary evaluations
of animals. This could be achieved through the use of CCTV monitoring
of the animals, linked to a CV pipeline which detects sheep faces, localises
the landmarks on the face, and determines pain levels from extracted action

units.

1.2 Aims and Structure

This project has a number of key aims ranging from acquisition of appropriate
data to end-to-end deployment of a video facial alignment system for sheep.

These are broken into five distinct aspects:

e Consideration of available data and description of annotation procedure.

Summary of augmentation techniques including the introduction of novel



image warping augmentation method.
e Exploration of landmark-free head pose estimation for animals.

e Evaluation of existing human facial landmark localisation methods ap-

plied to animal faces.

e Investigation into method providing improved facial landmark localisa-

tion performance for animals using head pose information.

e Application of animal facial landmark localisation in real-time on video
data.

Each of these topics is covered in a separate chapter. Given the wide range
of existing work relating to these different foci, a summary of relevant work

is given at the beginning of each chapter where appropriate.



Chapter 2

Dataset Annotation and Augmentation

The critical issue faced in facial landmark localisation for animals is one of
data sparsity. The sheep dataset used in [55] includes just 600 images (of
which approximately 500 are available) annotated with only eight landmarks.
The only other animal facial landmark dataset is that used in [40] for horses,
which includes 3717 images annotated with only five landmarks. This is in
stark contrast to facial datasets for humans; Multi-PIE [21] (750,000 images
with 68 landmarks), Menpo [57] (over 10,000 images with 39 landmarks),
AFLW [29] (25,993 images with 21 landmarks) and PUT [25] (9971 images
with 30 landmarks).

As such, it is imperative to enhance the available data for animal landmark lo-
calisation as much as possible to enable improved performance. This chapter
describes the annotation procedure used to extend the original sheep dataset
annotations to produce the Sheep Facial Landmarks in the Wild (SFLW)
dataset. This dataset contains 850 sheep images annotated with 25 facial
landmarks and occlusion information. The augmentation techniques used to
improve the data volume for training are also described; a novel thin-plate
spline (TPS) [5] warping method and negatively correlated augmentation
based on head pose [55]. These techniques are used to produce a series of
variants of the raw SFLW dataset which are used during this dissertation,

these are summarised at the end of the chapter.



2.1 Data Annotation

The SFLW dataset is composed primarily of images used in [55], with some
new images also included to bring the total number of images to 850. Almost
all of the original images feature unique animals, though it is difficult to con-
firm exactly how unique animals are contained in the dataset, it is certainly
fewer than 850.

An annotation scheme containing 25 landmarks is devised based on the orig-
inal eight-point annotation used in [55]. The original and updated schemes
are shown in Figure 2.1a. This is approximately based on human annotation
schemes, though with additional emphasis placed on the ears, which are typ-
ically excluded from human face alignment but are critical for most animals.
The eyes, nose and mouth are represented by eight landmarks, with a further
eight representing the ears and the remaining nine corresponding to the face
boundary. This scheme also allows for effective extraction of the action units

used for sheep pain estimation in [33]

Due to the shape of the sheep face, with an elongated snout, self-occlusion is
very common, far more so than for human faces. As such, the SFLW dataset
is also annotated with binary occlusion information for each landmark. Some
face alignment methods incorporate occlusion prediction [10, 53] which can

be exploited as a result of this additional annotation.

In order to more efficiently extend the original eight-point annotations from [55],
a semi-automated annotation approach is used. This kind of method is not
uncommon when attempting to unify annotations from various datasets [44],
though typically relies on a large volume of existing annotations to inform

automation.

Instead, a purely shape-driven technique is employed; base shapes for both
the original 8-point and new 25-point landmark schemes are defined (as
shown in Figure 2.1a) and the thin-plate spline (TPS) [5] transformation
from the 8-point base shape to the 8 annotated landmarks calculated. This

transformation is then applied directly to the 25-point base shape to obtain



Figure 2.1: Annotation specification and procedure.

(a) Standard shapes for
original (red) and new (blue)  (b) Example images with original (red), predicted new
landmarks. (blue) landmarks and TPS grid shown.

an approximate prediction of the 25 landmark location.

The TPS transformation implementation is adapted from that used in [4],
the resulting predicted annotations are visualised for two example images in
Figure 2.1b. For demonstrative purposes, the TPS transformation is applied

to a grid of points which are also rendered.

TPS warping is used due to its ability to incorporate both simple affine
transformations to account for global effects caused by pose variation, as
well as local deformations caused by variations in face shape or the relative
position of the ears. The grids in the example images clearly show how
rotations and shears are captured, as well as local effects such as in the area

around the eyes and ears of the second example.

These initial predictions are then manually tuned to the correct image loca-
tions, and occlusions annotated as applicable. This semi-automated approach
significantly increased the speed of annotation. The resulting SFLW dataset

contains 850 images with 25 landmarks and occlusion annotations.



2.2 Data Augmentation

A number of data augmentation methods are utilised to increase the effective
size of the SFLW dataset from the raw 850 images. Horizontal mirroring,
rotation and translation are all well-established methods of data augmenta-
tion for machine learning applications. In this case, horizontally flipping the
image (and transposing the landmark order as appropriate) is an effective
way of improving pose invariance. Rotating the images and translating the

facial bounding-boxes are also simple and effective augmentation methods.

This section introduces two additional techniques used for data augmenta-
tion; image warping using TPS transformations and negatively correlated
augmentation (NCA), both described in detail below.

2.2.1 TPS Warping

In order to avoid repeating identical images when training localisation mod-
els, TPS warping [5] is used to generate slight variations on input image
data. These variations are visually subtle but should allow for more general

representations of features to be learnt, and hence over-fitting to be avoided.

TPS warping is able to simulate changes in ear position as well as providing
low magnitude pose and face-shape variation. Affine warping of triangles
from the Delaunay triangulation of the landmarks is a common technique
for face morphing [19], but produces unrealistic results compared with TPS

warping for this application.

Somewhat similar warping techniques are highlighted in [12] with the goal of
face frontalisation, rather than data augmentation. [34] presents a method of
data augmentation using high-resolution 3D models of humans faces to aid
with the largely unrelated problem of face recognition. The variation in the
3D shape of sheep faces levels of self-occlusion caused by the shape of sheep

face make this method largely infeasible.



Figure 2.2: TPS warp augmentation for example image; note the rotated
ears, the slightly wider spacing between the eyes, and the movement of the
nose slightly towards the right of the image.

(c) Warped image with
(a) Original image. (b) Warped image. TPS grid.

1

The visible landmarks of the original image are randomly permuted according
to a hand-crafted set of rules, for example moving the eyes up or down,
and closer together or further apart. The TPS transformation from the
original landmarks to the permuted landmarks is then calculated and the
inverse transformation applied to a grid over the image area. The grid is
then linearly interpolated over the entire image area. This provides a set
of coordinates which can be sampled from the original image to efficiently
obtain a warped version of the image, with the correct image features now
in locations matching the permuted landmarks. An example of this process

is shown in Figure 2.2.

An alternative approach is to warp the landmarks of one image onto those of
another randomly selected from the training data, providing the difference
is not too great. Attempting this approach with such a small and varied
dataset, however, provides unrealistic warped image and so is not explored

further here.

2.2.2 Negatively Correlated Augmentation

One key issue with the SFLW dataset is the distribution of head poses

included. Unsurprisingly, the majority of facial images of sheep available



Figure 2.3: Absolute yaw angle distributions, using 6 degree bins, for SFLW
and SFLW-NCA datasets.
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online—most of the original dataset was sourced from the internet—have
frontal faces, or close to. Images collected specifically for the purposes of fa-
cial landmark localisation have a better distribution, but make up a smaller

proportion of the SFLW dataset.

The distribution of absolute yaw angles (i.e., the angle away from frontal)
for the raw dataset is given in Figure 2.3a. The imbalance is clear, with the
most common range (0-6 degrees) having over 40 times more images than
the least common range (84-90 degrees). Given the proposed application—
using CCTV within an agricultural setting—large variation in head pose is

expected to be common, and this imbalance is, therefore, a serious issue.

As such, a technique very similar to the negatively correlated augmentation
(NCA) introduced in [55] is employed. Using the distribution of absolute
yaw angles, a boosted augmentation factor for each pose bin is determined.

The integer augmentation factor for pose bin b, aug,, is given by:

{( coUNnt gz > j

aug, = _—

county

Where count,,q, is the maximum count for any pose bin, and count, is the

count for pose bin b. The level of boosting is controlled by parameter «,

where 0 < o < 1, this allows for the underlying distribution to be somewhat



maintained, but with a greater representation of less common pose angles.

The SFLW-NCA dataset is generated using o = 0.6 with pose bins 6 degrees
wide, this results in augmentation factors between 0 (i.e., no augmentation for
the most common bin) and 20, and an average augmentation number across
the dataset of ~3. The distribution of the resulting SFLW-NCA dataset
is shown in Figure 2.3b. It is clear that extreme poses are much better

represented using this method.

Augmented images are generated using the modifications described in the
previous section: random rotation and TPS warping. Horizontally flipped
versions of all images are also included, so the effective augmentation number
of the final SFLW-NCA dataset ranges between 1 and 40, with average ~6,
totalling 4794 images.

2.3 Summary

This chapter has described the newly introduced Sheep Facial Landmarks in
the Wild (SFLW) dataset, which includes 850 facial images of sheep anno-
tated with 25 facial landmarks, as well as occlusion information. The semi-
automated annotation procedure is described, along with the introduction
of an image augmentation technique using thin-plate-spline warping [5] to
emulate the effects of variation in face shape, head pose and local variations
such as ear position. In addition, the motivation, implementation and effects

of negatively correlated augmentation, as proposed in [55], are explored.

A number of variants of the SFLW dataset, employing various combinations
of the augmentation methods introduced above, are used for comparative
purposes throughout the remainder of the dissertation. These are sum-
marised in Table 2.1. The SFLW dataset contains the raw 850 images, and
SFLW-NCA is as described immediately above. In addition to these are the
SFLW-flip and SFLW-warp datasets used for the comparative evaluation of

individual image augmentation techniques.

10



Table 2.1: Summary of dataset variants.

Dataset #Images Mirroring TPS Warping Rotation NCA
SFLW 850

SFLW-flip 1700 v

SFLW-warp 5100 v v

SFLW-AUG 5100 v v v
SFLW-NCA 4794 v v v v

The SFLW-AUG dataset is introduced for comparison to SFLW-NCA. SFLW-
AUG also uses all forms of image augmentation but does not use NCA to
determine balanced augmentation factors. Every image is instead augmented

equally with augmentation factor 6 in order to approximately match the num-
ber of images in SFLW-NCA.

11



Chapter 3

Head Pose Estimation

Head pose estimation is a significantly less well-explored problem in com-
puter vision than landmark localisation. This is primarily because use cases
which require head pose information alone are not common compared with
applications which require full facial alignment. Head pose can also be es-
timated by finding a solution to the perspective-n-point problem between
2D landmarks and a predefined 3D landmark model [31]. Given that facial

landmark localisation is largely ‘solved’ for humans, this method is common.

This chapter first summarises work relevant to the problem of animal head
pose estimation, then describes in detail the methodology used as part of this
work; fine-tuning a human head pose estimation network. Finally, the pro-
posed technique is evaluated, with both quantitative and qualitative results

provided, and the effects of data augmentation are assessed.

3.1 Background

A number of classical techniques for human head pose estimation have been
proposed [35], though, as described above, it is common in practice to es-
timate head pose indirectly using facial landmarks. Recently, deep learning

has been applied to both landmark localisation and head pose estimation

12



for humans, often combined into a single network [39]. Specific networks
have also been designed to determine only the head pose of humans from im-
ages [43], aiming to be more efficient than the often very large, multi-function

networks and with impressive results.

In order to deal with the large amount of self-occlusion caused by varia-
tions in sheep head pose, the inverse procedure is considered. Rather than
calculating head pose from localised landmarks, we instead aim to improve
facial alignment performance by first predicting the head pose of the sheep
directly from the input image, and then using the estimated pose to aid in
the localisation process. Head pose is encoded as three angles: yaw, pitch
and roll, representing left /right, up/down and clockwise/anticlockwise rota-
tions in image space respectively. In this context, these angles are commonly
known as Euler angles. For the purposes of sheep facial alignment, yaw is

the most critical angle due to the resulting self-occlusions.

While inter-species transfer learning has shown to perform poorly for land-
mark localisation [40], presumably due to the significant difference in ap-
pearance between alike landmarks, there is significant scope for inter-species
transfer learning for head pose estimation. Firstly, there is a greater degree of
visual similarity between animals and humans when considering facial images
holistically, rather than locally as in the case of landmark localisation. The
task itself is also arguably simpler; the aim being to regress only three Euler
angles (yaw, pitch and roll) as opposed to a large number of two-dimensional
coordinates. As such, a landmark-free head pose estimation method for sheep
is developed by fine-tuning a pre-trained CNN model for human head pose

estimation.

13



3.2 Methodology

3.2.1 Data Preparation

In order to determine ground-truth head pose for the images in the SFLW
dataset a 3D base landmark model is manually defined with neutral head
pose (0 yaw, pitch and roll) and approximately average head shape. A
RANSAC [20] based method for solving the perspective-n-point problem is
then used to recover the approximate head pose using the 3D points of this
landmark model and the 2D annotated landmarks for each image. The six
landmarks representing the top, bottom and tip of both ears are excluded
from this correspondence as they typically move significantly relative to the
rest of the face. As the camera coefficients are unknown, the intrinsic param-
eters are estimated based on the image size and lens distortion is assumed
to be negligible. While the generated ground-truth poses are not exact, they
provide a very good approximation and are certainly sufficient for this appli-

cation.

3.2.2 Hopenet

As described above, transfer learning from a deep, human head pose esti-
mation network is employed to create a model capable of sheep head pose
estimation. The Hopenet network from [43] is selected due to its design fo-
cus specifically for head pose estimation, it is the most performant of the
networks trained in [43]. A Hopenet model pre-trained on the 300W-LP [62]

is used as the base model.

Ruiz et al. [43] introduce the principle of multi-loss training for head pose
estimation. Pose angles are sorted into 66 bins between —99 and +99 degrees,
forming the basis of a classification problem, for which conventional soft-max
loss is used. In addition to this, the expected continuous angle is calculated

from the soft-max output and mean squared error (MSE) loss evaluated

14



against the raw ground truth angles. These two losses are then summed (with
a significant weighting towards the cross-entropy loss). This is theorized to
enable the network to learn first a course guess of the angle based on the
classification problem, and then predict a more accurately tuned continuous
value based on the MSE loss.

The Hopenet architecture uses a ResNet [22] bottleneck followed by three
independent fully-connected layers, one for each of yaw, pitch and roll. Each
of these is followed by a 66 node soft-max layer from which cross-entropy loss

is calculated, along with the expected values used for the MSE loss.

3.2.3 Training Procedure

The base model is fine-tuned on the SFLW-NCA dataset with additional aug-
mentation provided by randomly flipping the input images in the z-direction
and translating the image by up to ~7% in the z- and y-directions (as in [43]).
Five-fold cross-validation is used, so a fifth of the dataset is isolated for test-

ing of each fold. A tenth of each remaining training set is used for validation.

A similar training process as in [43] is employed, using the Adam opti-
mizer [28] with default parameters. The model is trained in batches of 16
over 16 epochs, chosen as validation loss plateaus towards the end of this pe-
riod. A low initial learning rate of 0.0001 is used as the model is only being
fine-tuned and not trained end-to-end; a larger initial learning rate results in
very poor performance. The learning rate is also reduced by a factor of ten
halfway through training. The model with the lowest validation loss during

training is selected for evaluation.

3.3 Evaluation

To evaluate the effectiveness of the sheep head pose estimation model a
number of metrics are employed. Mean absolute error (MAE) is typically

used—and is the metric presented in [43]—though can often be misleading.

15



Table 3.1: Quantitative head pose estimation results for network trained on
SFLW-NCA and tested on SFLW compared with two baselines.

Mean Baseline Pre-trained Baseline Fine-tuned Model
Yaw Pitch Roll Ave Yaw Pitch Roll Ave Yaw Pitch Roll Ave

MAE 15.73 11.88 8.36 11.99 2777 1944 11.38 19.53 6.04 758 6.13 6.58
PCC 0.00  0.00 0.00 0.00 0.02 0.20 0.08 0.05 091 0.56 0.40 0.75
SAGR 0.50 0.57 0.50 0.52 0.51 036 045 044 0.78 0.83 0.77 0.80

For example, a model always predicting the mean of a dataset with little
deviation will often perform well in this metric. As such, Pearson’s Corre-
lation Coefficient (PCC) is used to assess the correlation of predictions with
the ground truth, arguably a better measure of a model’s usefulness. In ad-
dition to these two metrics, Sign Agreement metric (SAGR) [37] is used to
give a coarse indication of simply whether the prediction matches the general
direction (left or right/up or down) of the head pose. This is a significant
attribute when considering pose-informed landmark localisation. In all cases,

the unaugmented test set is used for evaluation.

3.3.1 Overall Performance

Two baselines are included for comparison to the fine-tuned model; firstly
taking the mean of the dataset as the prediction, and secondly using the
estimates generated by the pre-trained human head pose estimation network
when using sheep images as input. Results for these and the highest per-

forming fine-tuned model are given in Table 3.1.

The fine-tuned model outperforms both baselines significantly in all metrics
and for all of yaw, pitch and roll. The mean baseline achieves reasonable
MAE, as described above, but has no correlation to the ground-truth angles
and essentially random SAGR. The human baseline achieves some correlation
but has very large MAE and worse than random SAGR. In contrast, the fine-
tuned model achieves high PCC, perhaps the most critical metric, and also
good values for SAGR. The MAE is also much lower than both baselines,

with an average of approximately 6.5 degrees error. Critically, PCC for yaw
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is particularly high at 0.91; accurate yaw prediction enables significantly

improved landmark localisation, as highlighted in the following chapters.

It might be noted that SAGR is not as high as perhaps would be expected
given the relative simplicity of this metric. It is important to note the ef-
fect of the magnitude of angle on the value of SAGR. Considering yaw, for
example, SAGR for angles of magnitude less than 10 degrees is 0.67, while
for angles with magnitude greater than 10 degrees is 0.96. This is not sur-
prising given that for angles within 10 degrees of frontal there is relatively
little visual difference in the resulting 2D image. Confusion in sign for these
low magnitude angles is also not critical when considering application to

landmark localisation.

Qualitative pose estimation results for some example images in the SFLW
dataset are given in Figure 3.1, with pose visualised as a 3-dimensional axis
at the centre of the image. The blue axis represents the gaze direction, and
the red and green axes show the horizontal and vertical directions relative to
the sheep’s head respectively. As shown, pose predictions remain accurate

across a variety of sheep breeds and ages, as well as in extreme poses.

3.3.2 [Effects of Data Augmentation

To assess the effects of the various augmentation techniques introduced in
Section 2.2 on head pose estimation, the network is also trained of the SFLW,
SFLW-warp and SFLW-AUG datasets. The same training procedure as de-

scribed above is used.

Table 3.2 shows the results for the raw SFLW-flip dataset compared with
the SFLW-warp dataset, allowing evaluation of the effect of TPS warping
augmentation in isolation. For individual angles results are inconclusive, but
on average the model trained on SFLW-warp outperforms that trained on
SFLW-flip significantly in terms of MAE. SAGR is also slightly improved,
while PCC is equal for the two models. This indicates that for this TPS

warping does have some positive impact on performance.
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Figure 3.1: Qualitative head pose estimation results for network trained on
SFLW-NCA and tested on SFLW. Head pose is visualised as a
3-dimensional axis at the centre of the image.




Table 3.2: Head pose estimation performance metrics for networks trained
on the SFLW-flip and SFLW-warp datasets and tested on SFLW.

SFLW-flip SFLW-warp
Yaw Pitch Roll Ave Yaw Pitch Roll Ave

MAE 6.37 7.79 6.06 6.74 6.02 771 6.11 6.61
pPCC 091 050 045 0.74 0.90 053 0.39 0.74
SAGR 0.77 081 0.75 0.78 0.80 0.84 0.77 0.80

Table 3.3: Head pose estimation performance metrics for networks trained
on the SFLW-AUG and SFLW-NCA datasets and tested on SFLW.

SFLW-AUG SFLW-NCA
Yaw Pitch Roll Ave Yaw Pitch Roll Ave

MAE 595 7.70 6.10 6.59 6.04 7.58 6.13 6.58
PCC 091 055 043 0.75 091 056 040 0.75
SAGR 0.79 0.83 0.78 0.80 0.78 083 0.77 0.80

Table 3.3 shows the performance of the network when trained on the fully
augmented SFLW-AUG dataset, in comparison to the SFLW-NCA dataset.
Performance for both the AUG and NCA variants is slightly improved over
the SFLW-warp dataset, indicating the rotation of training images also pro-
vides a somewhat positive effect, and significantly improved over the unaug-
mented SFLW dataset. Over-fitting during the training process was markedly
lower for SFLW-AUG and SFLW-NCA.

There is very little difference between the results for the AUG and NCA vari-
ants. It seems that, for this application, NCA has little effect on resulting
performance. This is likely because the SFLW-AUG dataset already encap-
sulates enough variation in images with large pose angles for the network to
learn sufficiently. SFLW-NCA also contains slightly fewer images than the
AUG variant, but achieves near identical performance, suggesting that NCA

may have a small positive impact.

The model trained on the SFLW-NCA dataset has a smoother distribution of
MAE across the range of output angle magnitudes—as discussed for SAGR
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above—so is used for head pose prediction in the following chapters. The
results of this model are therefore also presented in Table 3.1 and Figure 3.1

above.

3.4 Summary

This chapter has demonstrated that, through fine-tuning of a CNN trained
for human head pose estimation, accurate estimation of sheep head pose from
images can be achieved. The Hopenet CNN [43] was fine-tuned on the SFLW-
NCA dataset, resulting in an average absolute error of 6.6 degrees and average
correlation of 0.75, with a maximum 0.91 for the yaw angle. TPS warping
augmentation was shown to have a positive impact on the effectiveness of
training, though NCA was found to provide no significant improvement over
the model trained on SFLW-AUG. Qualitative results demonstrated that
the network produces visually convincing head pose predictions for a variety

of head poses, as well as for different breeds and ages of sheep.
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Chapter 4

W
[RE sEae

Evaluation of Existing Facial Landmark
Localisation Methods

Face alignment for humans is a long-standing problem in computer vision
and has been tackled in a number of ways over the past decade or more.
Hand-crafted methods were initially popular, followed by techniques utilis-
ing cascades of regression trees, which were largely deemed to have solved
the 2D facial landmark localisation problem. More recently deep learning ap-
proaches have provided even more impressive results, and improved resilience

to variation in head pose, along with 3D landmark localisation.

This chapter briefly summarises some of the existing methods for human
facial alignment, as well as some relevant work for animals. A number of the
described methodologies are then evaluated on the SFLW dataset with no
domain-specific modification. The effects of the data augmentation described

in Section 2.2 are also considered as part of this evaluation.
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4.1 Background

4.1.1 Classical Approaches

There are a large variety of classical approaches to facial alignment, though
these typically tackle the problem only in 2D. Older approaches form separate
shape and appearance models from training data which are matched to a test
image by solving a non-linear least squares problem. These approaches do not
deal well with large variance in pose and are typically quite slow, they have

almost entirely been superseded by cascaded regression-based techniques.

Recent regression-based methods instead learn an ensemble, or cascade, of
regressors based on local image features in order to iteratively refine an es-
timate of landmark locations. These typically obtain higher accuracy than
shape models and are more resilient to variation in pose, but can still struggle
with significant pose variation and occlusion. With the exception of some
very recent deep learning based methods, modern regression techniques are

considered state-of-the-art for 2D human facial alignment.

Some extensions to these methods have been proposed, primarily fo